Energia El´etrica, Superintendˆencia de Regulac¸˜ao
Econˆomica.
Brun, A., Pinto, J., Pinto, A., Sauer, L., and Colman, E.
(2009). Fraud Detection in Electric Energy Using Dif-
ferential Evolution. In Intelligent System Applications
to Power Systems, 2009. ISAP ’09. 15th International
Conference on, pages 1 –5.
Burnet, M. (1959). The clonal selection theory of acquired
immunity. The Abraham Flexner Lectures. Cambridge
University Press.
CEEE (2011). A ceee distribuic¸˜ao.
<http://www.ceee.com.br/pportal/ceee/ Compo-
nent/Controller.aspx?CC=1755>. Companhia
Estadual de Distribuic¸˜ao de Energia El´etrica.
Dasgupta, D. (2006). Advances in artificial immune sys-
tems. Computational Intelligence Magazine, IEEE,
1(4):40 –49.
Dasgupta, D. and NI
˜
NO, L. F. (2008). Immunological
Computation: Theory and Applications. CRC Press,
Florida, US.
De Castro, L. N. and Timmis, J. (2002). Artificial Im-
mune Systems: A New Computational Intelligence Ap-
proach. Springer, London, UK.
Depuru, S., Wang, L., and Devabhaktuni, V. (2011). Sup-
port vector machine based data classification for de-
tection of electricity theft. In Power Systems Confer-
ence and Exposition (PSCE), 2011 IEEE/PES, pages
1 –8.
Depuru, S., Wang, L., Devabhaktuni, V., and Gudi, N.
(2010). Measures and setbacks for controlling elec-
tricity theft. In North American Power Symposium
(NAPS), 2010, pages 1 –8.
Dick, A. (1995). Theft of electricity-how uk electricity
companies detect and deter. In Security and Detec-
tion, 1995., European Convention on, pages 90 –95.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The WEKA data mining
software: an update. SIGKDD Explor. Newsl., 11:10–
18.
Hilaire, V., Koukam, A., and Rodriguez, S. (2008). An
adaptative agent architecture for holonic multi-agent
systems. ACM Trans. Auton. Adapt. Syst., 3:2:1–2:24.
Kessentini, M., Vaucher, S., and Sahraoui, H. (2010). De-
viance from perfection is a better criterion than close-
ness to evil when identifying risky code. In Pro-
ceedings of the IEEE/ACM international conference
on Automated software engineering, ASE ’10, pages
113–122, New York, NY, USA. ACM.
Kodaz, H., Babaoglu, I., and Iscan, H. (2009). Thyroid
disease diagnosis using artificial immune recognition
system (airs). In Proceedings of the 2nd Interna-
tional Conference on Interaction Sciences: Informa-
tion Technology, Culture and Human, ICIS ’09, pages
756–761, New York, NY, USA. ACM.
Kohavi, R. (1995). A study of cross-validation and boot-
strap for accuracy estimation and model selection. In
Proceedings of the 14th international joint confer-
ence on Artificial intelligence - Volume 2, pages 1137–
1143, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.
Monedero, i., Biscarri, F., Le´on, C., Biscarri, J., and Mill´an,
R. (2006). MIDAS: Detection of Non-technical
Losses in Electrical Consumption Using Neural Net-
works and Statistical Techniques. In Gavrilova, M.,
Gervasi, O., Kumar, V., Tan, C., Taniar, D., Lagan`a,
A., Mun, Y., and Choo, H., editors, Computational
Science and Its Applications - ICCSA 2006, volume
3984 of Lecture Notes in Computer Science, pages
725–734. Springer Berlin / Heidelberg.
Nasir, A. N. M., Selamat, A., and Selamat, H. (2009). An
artificial immune system for recommending relevant
information through political weblog. In Proceed-
ings of the 11th International Conference on Infor-
mation Integration and Web-based Applications and
Services, iiWAS ’09, pages 420–424, New York, NY,
USA. ACM.
Queiroga, R. and Varej˜ao, F. (2005). AI and GIS together
on energy fraud detection. In North American Trans-
mission and Distribution Conference and Expo.
Rodionov, A. S., Choo, H., and Nechunaeva, K. A. (2011).
Framework for biologically inspired graph optimiza-
tion. In Proceedings of the 5th International Con-
ference on Ubiquitous Information Management and
Communication, ICUIMC ’11, pages 11:1–11:4, New
York, NY, USA. ACM.
Smith, T. B. (2004). Electricity theft: a comparative analy-
sis. Energy Policy, 32(18):2067 – 2076.
Yu, H. (2008). Optimizing task schedules using an artifi-
cial immune system approach. In Proceedings of the
10th annual conference on Genetic and evolutionary
computation, GECCO ’08, pages 151–158, New York,
NY, USA. ACM.
Yu, Y. (2011). Anomaly intrusion detection based upon an
artificial immunity model. In Proceedings of the 49th
Annual Southeast Regional Conference, ACM-SE ’11,
pages 121–125, New York, NY, USA. ACM.
Zhang, X.-f., Liu, J., and Ding, Y.-s. (2009). An immune co-
evolutionary algorithm based approach for optimiza-
tion control of gas turbine. In Proceedings of the first
ACM/SIGEVO Summit on Genetic and Evolutionary
Computation, GEC ’09, pages 751–756, New York,
NY, USA. ACM.
ApplicationofanArtificialImmuneSystemtoPredictElectricalEnergyFraudandTheft
271