Adaptive Gravitational Search Algorithm for PI-fuzzy Controller Tuning

Radu-Codruţ David, Radu-Emil Precup, Emil M. Petriu, Mircea-Bogdan Rădac, Constantin Purcaru, Claudia-Adina Dragoş, Stefan Preitl

2012

Abstract

This paper proposes an adaptive Gravitational Search Algorithm (aGSA) focused on tuning of Takagi-Sugeno PI-fuzzy controllers (T-S PI-FCs). The algorithm adapts two depreciation laws of the gravitational constant to the iteration index, a parameter in the weighted sum of all forces exerted from the other agents to the iteration index, and the reset at each stage of agents’ worst fitnesses and positions to their best values. Two fuzzy logic blocks carry out the adaptation of the ratios of exploration runs and explanation runs using the ratio between the minimum and maximum Popov sums as an input variable. A tuning method for T-S PI-FCs dedicated to a class of nonlinear servo systems with an integral component and is offered, and T-S PI-FCs with reduced process gain sensitivity are tuned. A case study and digital simulation results illustrate the optimal tuning of a T-S PI-FC for the position control of a laboratory servo system.

References

  1. Askari, H., Zahiri, S.-H., 2011. Decision function estimation using intelligent gravitational search algorithm. International Journal of Machine Learning and Cybernetics. DOI 10.1007/s13042-011-0052-x.
  2. Åström, K. J., Hägglund, T., 1995. PID Controllers Theory: Design and Tuning. Research Triangle Park, NC: Instrument Society of America.
  3. Baranyi, P., Korondi, P., Hashimoto, H., Wada, M., 1997. Fuzzy inversion and rule base reduction. In Proceedings of IEEE International Conference on Intelligent Engineering Systems (INES'97). Budapest, Hungary, 301-306.
  4. Bellomo, D., Naso, D., Babuška, R., 2008. Adaptive fuzzy control of a non-linear servo-drive: theory and experimental results. Engineering Applications of Artificial Intelligence. 21, 846-857.
  5. Blažic, S., Škrjanc, I., Matko, D., 2003. Globally stable direct fuzzy model reference adaptive control. Fuzzy Sets and Systems. 139, 3-33.
  6. Ferreira, P. M., Ruano, A. E., 2009. On-line slidingwindow methods for process model adaptation. IEEE Transactions on Instrumentation and Measurement. 58, 3012-3020.
  7. Haber, R. E., Haber-Haber, R., Jiménez, A., Galán, R., 2009. An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process. Applied Soft Computing. 9, 889-895.
  8. Hladek, D., Vašcák, J., Sincák, P., 2009. Multi-robot control system for pursuit-evasion problem. Journal of Electrical Engineering. 60, 143-148.
  9. Johanyák, Z. C., 2010. Student evaluation based on fuzzy rule interpolation. International Journal of Artificial Intelligence. 5, 37-55.
  10. Juang, C.-F., Chang, P.-H., 2011. Recurrent fuzzy system design using elite-guided continuous ant colony optimization. Applied Soft Computing. 11, 2687-2697.
  11. Landau, Y.-D., 1979. Adaptive Control: The Model Reference Approach. New York: Marcel Dekker.
  12. Leva, A., Maggio, M., 2011. A systematic way to extend ideal PID tuning rules to the real structure. Journal of Process Control. 21, 130-136.
  13. Ling, S. H., Iu, H. H. C., Chan, K. Y., Lam, H. K.., Yeung, C. W., Leung, F. H. F., 2008. Hybrid particle swarm optimization with wavelet mutation and its industrial applications. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 38, 743-763.
  14. Onieva, E., Naranjo, J. E., Milanés, V., Alonso, J., García, R., Pérez, J., 2011. Automatic lateral control for unmanned vehicles via genetic algorithms. Applied Soft Computing. 11, 1303-1309.
  15. Precup, R.-E., David, R.-C., Petriu, E. M., Preitl, S., Radac, M.-B., 2011a. Fuzzy control systems with reduced parametric sensitivity based on simulated annealing. IEEE Transactions on Industrial Electronics. DOI 10.1109/TIE.2011.2130493.
  16. Precup, R.-E., David, R.-C., Petriu, E. M., Radac, M.-B., Preitl, S., Fodor, J., 2011b. Evolutionary optimizationbased tuning of low-cost fuzzy controllers for servo systems. Knowledge-Based Systems. DOI 10.1016/j.knosys.2011.07.006.
  17. Precup, R.-E., Preitl, S., Fur, G., 2003. PI predictive fuzzy controllers for electrical drive speed control: Methods and software for stable development. Computers in Industry. 52, 253-270.
  18. Preitl, S., Precup, R.-E., 1999. An extension of tuning relations after symmetrical optimum method for PI and PID controllers. Automatica. 35, 1731-1736.
  19. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., 2009. GSA: A gravitational search algorithm. Information Sciences. 179, 2232-2248.
  20. Sala, A., Guerra, T. M., Babuška, R., 2005. Perspectives of fuzzy systems and control. Fuzzy Sets and Systems. 156, 432-444.
  21. Valdez, F., Melin, P., Castillo, O., 2011. An improved evolutionary method with fuzzy logic for combining particle swarm optimization and genetic algorithms. Applied Soft Computing. 11, 2625-2632.
  22. Visioli, A., 2004. A new design for a PID plus feedforward controller. Journal of Process Control. 14, 457-463.
Download


Paper Citation


in Harvard Style

David R., Precup R., Petriu E., Rădac M., Purcaru C., Dragoş C. and Preitl S. (2012). Adaptive Gravitational Search Algorithm for PI-fuzzy Controller Tuning . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 136-141. DOI: 10.5220/0003998101360141


in Bibtex Style

@conference{icinco12,
author={Radu-Codruţ David and Radu-Emil Precup and Emil M. Petriu and Mircea-Bogdan Rădac and Constantin Purcaru and Claudia-Adina Dragoş and Stefan Preitl},
title={Adaptive Gravitational Search Algorithm for PI-fuzzy Controller Tuning},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={136-141},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003998101360141},
isbn={978-989-8565-21-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Adaptive Gravitational Search Algorithm for PI-fuzzy Controller Tuning
SN - 978-989-8565-21-1
AU - David R.
AU - Precup R.
AU - Petriu E.
AU - Rădac M.
AU - Purcaru C.
AU - Dragoş C.
AU - Preitl S.
PY - 2012
SP - 136
EP - 141
DO - 10.5220/0003998101360141