
ACKNOWLEDGEMENTS
This work was supported by the project “Iden-
tificaci
´
on semiautom
´
atica de pacientes con enfer-
medades cr
´
onicas a partir de la exploraci
´
on retro-
spectiva de las historias cl
´
ınicas electr
´
onicas reg-
istradas en el sistema SAHI del Hospital San Ignacio”
made by Pontificia Universidad Javeriana and Hospi-
tal Universitario San Ignacio.
REFERENCES
Antal, P., de Moor, B., and M
´
esz
´
aros, T. (2001). Anno-
tated bayesian networks: A tool to integrate textual
and probabilistic medical knowledge. In Proc. of the
14th IEEE Symp. on Computer-Based Medical Sys-
tems, CBMS ’01.
Averbuch, M., Karson, T. H., Ben-Ami, O., and Rokach,
L. (2004). Context-sensitive medical information re-
trieval. Studies in health technology and informatics.
Bechhofer, S., van Harmelen, F., Hendler, J., and Horrocks,
I. (2009). ”owl web ontology language reference”.
Technical report, W3C.
Breault, J. L., Goodall, C. R., and Fos, P. J. (2002). Data
mining a diabetic data warehouse. Artificial Intelli-
gence in Medicine.
Chapman, W. W., Bridewell, W., Hanbury, P., and Cooper
(2001). A simple algorithm for identifying negated
findings and diseases in discharge summaries. J. of
Biomedical Informatics.
Claster, W., Shanmuganathan, S., and Ghotbi, N. (2008).
Text mining of medical records for radiodiagnostic
decision-making. JCP.
Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.,
and Aswani, N. (2011). Text Processing with GATE
(Version 6).
Ginter, F., Suominen, H., Pyysalo, S., and Salakoski, T.
(2009). Combining hidden markov models and latent
semantic analysis for topic segmentation and labeling:
Method and clinical application. I. J. Medical Infor-
matics.
Han, H., Choi, Y., Choi, Y. M., Zhou, X., and Brooks, A. D.
(2006). A generic framework: From clinical notes to
electronic medical records. Computer-Based Medical
Systems, IEEE Symp.
Hanauer, D. A. (2006). Emerse: The electronic medical
record search engine. AMIA A. Symp Proc.
Hotho, A., N
¨
urnberger, A., and Paass, G. (2005). A brief
survey of text mining. LDV Forum.
Huang, M.-J., Chen, M.-Y., and Lee (2007). Integrating data
mining with case-based reasoning for chronic diseases
prognosis and diagnosis. Expert Syst. Appl.
Keeney, R. and Raiffa, H. (1976). Decisions with multiple
objectives: Preferences and value tradeoffs. J. Wiley,
New York.
Manning, C. D., Raghavan, P., and Schtze, H. (2008). In-
troduction to Information Retrieval.
Rokach, L., Romano, R., and Maimon, O. (2008). Negation
recognition in medical narrative reports. I. R.
Schmid, H. (1994). Probabilistic part-of-speech tagging us-
ing decision trees. In Proceedings of the International
Conference on New Methods in Language Processing.
Seyfried, L., Hanauer, D. A., Nease, D., and Albeiruti
(2009). Enhanced identification of eligibility for de-
pression research using an electronic medical record
search engine. Inter. J. of Medical Informatics.
Spasic, I., Ananiadou, S., McNaught, J., and Kumar, A.
(2005). Text mining and ontologies in biomedicine:
Making sense of raw text. Briefings in Bioinformat-
ics.
USNLM (2011). Unified medical language system
R
(umls
R
). http://www.nlm.nih.gov/research/umls/.
Noviembre 25, 2011.
Zhou, X., Han, H., Chankai, I., Prestrud, A. A., and Brooks,
A. D. (2005). Converting semi-structured clinical
medical records into information and knowledge. In
Proc. of the 21st Inter. C. on Data Eng. WS.
ICEIS2012-14thInternationalConferenceonEnterpriseInformationSystems
156