Quantitative Estimates of Stability in Controlled GI | D | 1 | #INF# Queueing Systems and in Control of Water Release in a Simple Dam Model
Evgueni Gordienko, Juan Ruiz de Chávez
2012
Abstract
We consider two applied discrete-time Markov control models: waiting times process in $\mbox{GI}\mid \mbox{D}\mid 1 \mid\infty$ queues with a controlled service rate and water release control in a simple dam model with independent water inflows. The stochastic dynamics of both models is determinated by a sequence of independent and identically distributed random variables with a distribution function $F$. In the situation when an available approximation $\tilde{F}$ is used in place of the unknown ${F}$, we estimate the deterioration of performance of control policies optimal with respect to the total discounted cost and the average cost per unit of time. For this purpose we introduce a stability index and find uppers bounds for this index expressed in terms of the Prokhorov distance between the distributions functions $F$ and $\tilde{F}$. When $\tilde{F} \equiv \tilde{F_{m}}$ is the empirical distribution function obtained from a sample of size m in average the stability index is less than a constant times $m^{\frac{-1}{3}}$.
References
- Abramov, V. (2008). Continuity theorems for the M/M/1/n queueing system. Queueing Syst., 59(1):68-86.
- Anderson, D., Sweeney, D., Thomas, A., Williams, T., Camm, J., and Martin, K. (2012). Introduction to Management Science: Quantitative Approaches to Decision Making, Revised. South-Western Cengage Learning, USA, 13-th edition.
- Asmussen, S. (1987). Applied Probability and Queues. John Willey Chichester.
- Bae, J., Kim, S., and Lee, E. (2003). Average cost under the PlM;t policy in a finite dam with compound Poisson inputs. J. Appl. Probab., 40:519-526.
- Barbu, V. and Sritharan, S. (1998). H-infinity control theory of fluid dynamics. Proceedings of the Royal Society of London, Ser. A., 545:3009-3033.
- Dynkin, E. and Yushkevich, A. (1979). Controlled Markov Processes. Springer, New York.
- Gordienko, E., Lemus-Rodriguez, E., and Montes-de Oca, R. (2009). Average cost Markov control processes: stability with respect to the Kantorovich metric. Math. Meth. Oper. Res., 70:13-33.
- Gordienko, E. and Ruiz de Chavez, J. (1998). New estimates of continuity in M=GI=1=¥ queues. Queueing Syst., 29:175-188.
- Gordienko, E. and Salem, F. (2000). Estimates of stability of Markov control processes with unbounded cost. Kybernetika, 36:195-210.
- Hernández-Lerma, O. (1989). Adaptive Markov Control Processes. Springer, New York.
- Hernández-Lerma, O. and Lasserre, J. (1996). Discretetime Markov Control Processes, Basic Optimization Criteria. Springer, New York.
- Kalashnikov, V. (1983). The analysis of continuity of queueing systems. In Probability Theory and Mathematical Statistics (Tbilisi, 1982). Lecture Notes in Math.(1021) Springer.
- Kitaev, M. and Rykov, V. (1995). Controlled Queueing Systems. CRC Press, Boca Raton FL.
- Litrico, X. and Georges, D. (2001). Robust LQG control of single input multiple outputs dam-river systems. International Journal of Systems Science, 32:795-805.
- MacPhee, I. and Müller, L. (2006). Stability criteria for controlled queueing systems. Queueing Syst., 52(3):215- 229.
- Meyn, S. and Tweedie, R. (2009). Markov Chains and Stochastic Stability. Cambridge University Press, Cambridge, 2nd edition.
- Van Dijk, M. (1988). Perturbation theory for unbounded Markov reward processes with applications to queueing. Adv. Appl. Probab., 20:91-111.
- Van Dijk, M. and Sladky, K. (1999). Error bounds for nonnegative dynamic models. J. Optim. Theory Appl., 101:449-474.
- Zolotarev, V. (1976). On stochastic continuity of queuing systems of type G jGj 1. Theor. Probab. Appl., 21:250- 269.
Paper Citation
in Harvard Style
Gordienko E. and Ruiz de Chávez J. (2012). Quantitative Estimates of Stability in Controlled GI | D | 1 | #INF# Queueing Systems and in Control of Water Release in a Simple Dam Model . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 309-312. DOI: 10.5220/0004012603090312
in Bibtex Style
@conference{icinco12,
author={Evgueni Gordienko and Juan Ruiz de Chávez},
title={Quantitative Estimates of Stability in Controlled GI | D | 1 | #INF# Queueing Systems and in Control of Water Release in a Simple Dam Model},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={309-312},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004012603090312},
isbn={978-989-8565-21-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Quantitative Estimates of Stability in Controlled GI | D | 1 | #INF# Queueing Systems and in Control of Water Release in a Simple Dam Model
SN - 978-989-8565-21-1
AU - Gordienko E.
AU - Ruiz de Chávez J.
PY - 2012
SP - 309
EP - 312
DO - 10.5220/0004012603090312