Object Recognition based on a Simplified PCNN

Yuli Chen, Yide Ma, Dong Hwan Kim, Sung-Kee Park

2012

Abstract

The aim of the paper is to propose a region-based object recognition method to identify objects from complex real-world scenes. The proposed method firstly performs a colour image segmentation by a simplified pulse coupled neural network (SPCNN) model, and the parameters of the SPCNN are automatically set by our previously proposed parameter setting method. Subsequently, the proposed method performs a region-based matching between a model object image and a test image. A large number of object recognition experiments have proved that the proposed method is robust against the variations in translation, rotation, scale and illumination, even under partial occlusion and highly clutter backgrounds. Also it shows a good performance in identifying less-textured objects, which significantly outperforms most feature-based methods.

References

  1. Abdel-Hakim, A. E. and Farag, A. A. (2006). CSIFT: A SIFT Descriptor with Color Invariant Characteristics. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). New York, NY, USA, pp. 1978 - 1983.
  2. Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L. (2008). Speeded-Up Robust Features (SURF). Computer Vision and Image Understanding, 110(3), 346-359.
  3. Bosch, A., Zisserman, A. and Muñoz, X. (2008). Scene Classification Using a Hybrid Generative/Discriminative Approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(4), 712-727.
  4. Burghouts, G. J. and Geusebroek, J.-M. (2009). Performance Evaluation of Local Colour Invariants. Computer Vision and Image Understanding, 113(1), 48-62.
  5. Chen, Y., Park, S.-K., Ma, Y. and Ala, R. (2011). A New Automatic Parameter Setting Method of a Simplified PCNN for Image Segmentation. IEEE Transactions on Neural Networks, 22(6), 880-892.
  6. Eckhorn, R., Reitboeck, H. J., Arndt, M. and Dicke, P. W. (1990). Feature Linking via Synchronization Among Distributed Assemblies: Simulations of Results from Cat visual Cortex. Neural Computation, 2(3), 293 -307.
  7. Gu, X. (2008). Feature Extraction using Unit-linking Pulse Coupled Neural Network and its Applications. Neural Processing Letters, 27(1), 25-41.
  8. Johnson, J. L. (1994). Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images. Applied Optics, 33(26), 6239-6253.
  9. Johnson, J. L. and Padgett, M. L. (1999). PCNN Models and Applications. IEEE Transactions on Neural Networks, 10(3), 480-498.
  10. Ke, Y. and Sukthankar, R. (2004). PCA-SIFT: A More Distinctive Representation for Local Image Descriptors, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Washington, D.C., USA, pp. 506-513.
  11. Kinser, J. M. (1996). Object Isolation. Optical Memory & Neural Networks, 5(3), 137-145.
  12. Lindblad, T. and Kinser, J. M. (2005). Image Processing Using Pulse-Coupled Neural Networks (2nd ed.). New York: Springer-Verlag.
  13. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110.
  14. Ma, Y. D., Zhan, K. and Wang, Z. B. (2010). Applications of Pulse-Coupled Neural Networks (1st ed.). Berlin, Germany: Springer-Verlag.
  15. Mikolajczyk, K. and Schmid, C. (2005). A Performance Evaluation of Local Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615-1630.
  16. Ranganath, H. S. and Kuntimad, G. (1999). Object Detection Using Pulse Coupled Neural Networks. IEEE Transactions on Neural Networks, 10(3), 615- 620.
  17. Stein, A. and Hebert, M. (2005). Incorporating Background Invariance into Feature-based Object Recognition. IEEE Workshops on Application of Computer Vision (WACV/MOTION'05), Breckenridge, CO, pp. 37 - 44.
  18. Ullman, S., Sali, E. and Vidal-Naquet, M. (2001). A Fragment-based Approach to Object Representation and Classification. In Arcelli, A., Cordella, L.P. and Sanniti di Baja, G. (Eds.), International Workshop on Visual Form (pp. 85-100). Berlin: Springer.
  19. van de Sande, K. E. A., Gevers, T. and Snoek, C. G. M. (2010). Evaluating Color Descriptors for Object and Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1582-1596.
  20. Weijer, J. v. d., Gevers, T. and Bagdanov, A. D. (2006). Boosting Color Saliency in Image Feature Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 150-156.
  21. Yu, B. and Zhang, L. M. (2004). Pulse-coupled neural networks for contour and motion matchings. IEEE Transactions on Neural Networks, 15(5), 1186-1201.
  22. Zhan, K., Zhang, H. J. and Ma, Y. D. (2009). New Spiking Cortical Model for Invariant Texture Retrieval and Image Processing. IEEE Transactions on Neural Networks, 20(12), 1980-1986.
Download


Paper Citation


in Harvard Style

Chen Y., Ma Y., Kim D. and Park S. (2012). Object Recognition based on a Simplified PCNN . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 223-229. DOI: 10.5220/0004013102230229


in Bibtex Style

@conference{icinco12,
author={Yuli Chen and Yide Ma and Dong Hwan Kim and Sung-Kee Park},
title={Object Recognition based on a Simplified PCNN},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={223-229},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004013102230229},
isbn={978-989-8565-22-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Object Recognition based on a Simplified PCNN
SN - 978-989-8565-22-8
AU - Chen Y.
AU - Ma Y.
AU - Kim D.
AU - Park S.
PY - 2012
SP - 223
EP - 229
DO - 10.5220/0004013102230229