0 1 2 3
10
−6
10
−5
10
−4
10
−3
10
−2
10
−1
10
0
E
b
/N
0
(dB)
BER - Hu
BER - DHS
WER - Hu
WER - DHS
Figure 1: Two r = 0.5 LDPC codes with n = 504 and an
AWGNC. DHS refers to the Downhill-Simplex based de-
sign proposed in this paper and Hu refers to the design re-
sults obtained in (Hu et al., 2005).
0 1 2 3 4
5 6
10
−7
10
−6
10
−5
10
−4
10
−3
10
−2
10
−1
10
0
E
b
/N
0
(dB)
BER - DE
BER - DHS
BER - reg
WER - DE
WER - DHS
WER - reg
Figure 2: Three rate 0.608 LDPC codes of length n = 576
with a MMGC and Estimation-Decoding. DE stands for the
Density-Evolution design, DHS for the Downhill-Simplex
based design described in section 3 and reg for a regular
LDPC code.
LDPC code of length n = 576 is designed with the
proposed algorithm for a Markov-modulated Gaus-
sian Channel. The results of a following simulation
reveal a superior decoding performance of the LDPC
code designed with our method compared to the de-
sign by means of Density-Evolution.
ACKNOWLEDGEMENTS
This work is part of the project MERSES and has
been supported by the European Union and the Ger-
man state Baden-W¨urttemberg.
REFERENCES
Amin, T. R., Richardson, T., Shokrollahi, A., and Urbanke,
R. (1999). Design of provably good low-density parity
check codes. In IEEE Transactions on Information
Theory.
Eckford, A. W. (2004). Low-density parity-check codes for
Gilbert-Elliott and Markov-modulated channels. PhD
thesis, University of Toronto.
Gallager, R. G. (1962). Low density parity check codes.
IRE Trans on Information Theory, 1:21–28.
Hu, X. Y., Eleftheriou, E., and Arnold, D. M. (2005).
Regular and irregular progressive edge-growth tanner
graphs. Information Theory, IEEE Transactions on,
51(1):386–398.
Hu, X. Y., Eleftheriou, E., Arnold, D. M., and Dholakia, A.,
editors (2002). Efficient implementations of the sum-
product algorithm for decoding LDPC codes, vol-
ume 2.
Luby, M., Mitzenmacher, M., Shokrollah, A., and Spiel-
man, D. (1998). Analysis of low density codes and
improved designs using irregular graphs. In Proceed-
ings of the thirtieth annual ACM symposium on The-
ory of computing, pages 249–258.
Luby, M. G., Mitzenmacher, M., Shokrollahi, M. A., and
Spielman, D. A. (2001). Improved low-density parity-
check codes using irregular graphs. Information The-
ory, IEEE Transactions on, 47(2):585–598.
MacKay, D. and Neal, R. (1995). Good codes based on very
sparse matrices. Cryptography and Coding, pages
100–111.
MacKay, D. J. C., Wilson, S. T., and Davey, M. C.
(1999). Comparison of constructions of irregular gal-
lager codes. Communications, IEEE Transactions on,
47(10):1449–1454.
Nelder, J. A. and Mead, R. (1965). A simplex method
for function minimization. The computer journal,
7(4):308.
Proß, W., Quint, F., and Otesteanu, M. (2010). Estimation-
decoding of short blocklength ldpc codes on a
markov-modulated gaussian channel. In 3rd IEEE In-
ternational Conference on Signal Processing Systems
(ICSPS2011) Proceedings, pages 383–387.
Richardson, T. J., Shokrollahi, M. A., and Urbanke, R. L.
(2001). Design of capacity-approaching irregular low-
density parity-check codes. Information Theory, IEEE
Transactions on, 47(2):619–637.
Richardson, T. J. and Urbanke, R. L. (2001). The capac-
ity of low-density parity-check codes under message-
passing decoding. Information Theory, IEEE Trans-
actions on, 47(2):599–618.
Tanner, R. M. (1981). A recursive approach to low com-
plexity codes. IEEE Transactions on Information The-
ory, 27:533–547.
SIGMAP2012-InternationalConferenceonSignalProcessingandMultimediaApplications
34