A Proposal of Multiobjective Fuzzy Regulator Design for State Space Nonlinear Systems

Rafael J. M. Santos, Ginalber L. O. Serra

2012

Abstract

This paper proposes a Takagi-Sugeno (TS) fuzzy regulator design methodology for nonlinear dynamic systems. The Linear Quadratic Regulator (LQR) and Pole Placement (PP) techniques are combined in a TS fuzzy structure in order to guarantee an optimal controller with satisfactory transient response based on poles allocated properly. The definition and analysis of the multiobjective feasible region, considering the influence of the desired poles on the weighting matrices Q and R in the quadratic cost function, are presented. Lyapunov based stability analysis and simulations results on fuzzy regulator design for a robotic manipulator illustrates the efficience of the proposed methodology.

References

  1. Abbas, G., Farooq, U., and Asad, M. U. (2011). Fuzzy logic based robust pole-placement controller for dcdc buck converter. In Proceedings of the International Conference on Information and Communication Technologies (ICICT).
  2. Babuška, R. (1998). Fuzzy Modeling for Control. Kluwer Academic Publishers.
  3. Bergsten, P. (2001). Observers and Controllers for TakagiSugeno Fuzzy Systems. Àrebo.
  4. Berrios, R., nez, F. N., and Cipriano, A. (2011). Fault tolerant measurement system based on takagi-sugeno fuzzy models for a gas turbine in a combined cycle power plant. Elsevier Fuzzy Sets and Systems, 174(1):114-130.
  5. Boulkrounea, A., Tadjineb, M., M'Saadc, M., and Farzac, M. (2010). Fuzzy adaptive controller for mimo nonlinear systems with known and unknown control direction. Elsevier Fuzzy Sets and Systems, 161(26):797-820.
  6. Chen, B., Liu, X., and Tong, S. (2007a). Adaptive fuzzy output tracking control of mimo nonlinear uncertain systems. IEEE Transactions on Fuzzy Systems, 15(2):287-300.
  7. Chen, Y., Yang, B., Abraham, A., and Peng, L. (2007b). Automatic design of hierarchical takagi-sugeno type fuzzy systems using evolutionary algorithms. IEEE Transactions on Fuzzy Systems, 15(3):385-397.
  8. Choi, H. H. (2007). Lmi-based nonlinear fuzzy observercontroller design for uncertain mimo nonlinear systems. IEEE Transactions on Fuzzy Systems, 15(5):956-971.
  9. Eberhart, R. and Shi, Y. (2007). Computational Intelligence - Concepts to Implementations. Morgan Kaufmann Publishers Elsevier.
  10. Eltamaly, A. M., Alolah, A. I., and Badr, B. M. (2010). Fuzzy controller for three phases induction motor drives. In Proceedings of the International Conference on Autonomous and Intelligent Systems (AIS), pages 1-6.
  11. Gheysari, K. and Mashoufi, B. (2011). Implementation of cmos flexible fuzzy logic controller chip in current mode. Elsevier Fuzzy Sets and Systems, 185(1):125- 137.
  12. Ghosh, B., Martin, C. F., and Zhou, Y. (2009). Emergent Problems In Nonlinear Systems And Control. Springer-Verlag.
  13. Gorji, A. A. and Menhaj., M. B. (2008). Artificial neural networks for stochastic control of nonlinear state space systems. In Proceedings of the IEEE World Congress on Computational Intelligence, pages 147- 154.
  14. Gui-juan, W., X. Hong-dong, W. Z.-X., and Xu-guang., Z. (2010). The application of fuzzy-neural network based on hga in the washing machine control system. In Proceedings of the International Conference on Intelligent Computation Technology and Automation (ICICTA), pages 702-705.
  15. Jiang, L., Xiao, J., Zhou, C., and Gong, J. (2008). Multirate input control for fuzzy systems based on disk-pole placement. In Proceedings of the 3rd International Conference on Innovative Computing Information and Control (ICICIC'08), pages 496-500.
  16. Khanesar, M. A., Kaynak, O., and Teshnehlab, M. (2011). Direct model reference takagi-sugeno fuzzy control of siso nonlinear systems. IEEE Transactions on Fuzzy Systems, 19(5):914-924.
  17. Ko, H.-S. and Jatskevich, J. (2007). Power quality control of wind-hybrid power generation system using fuzzy-lqr controller. IEEE Transactions on Energy Conversion, 22(2):516-527.
  18. Lendek, Z., Babuška, R., and Schutter, B. D. (2009). Stability of cascaded fuzzy systems and observers. IEEE Transactions on Fuzzy Systems, 17(3):641-653.
  19. Li, T.-H. S. and Tsai, S.-H. (2007). T-s fuzzy bilinear model and fuzzy controller design for a class of nonlinear systems. IEEE Transactions on Fuzzy Systems, 15(3):494-506.
  20. Li, Z. (2010). Intelligent fuzzy immune pid controller design for multivariable process control system. In Proceedings of the IEEE 8th World Congress on Intelligent Control and Automation, pages 4953-4957.
  21. Liu, Y.-J., Tonga, S.-C., and Lib, T.-S. (2011). A neuralfuzzy modelling framework based on granular computing: Concepts and applications. Elsevier Fuzzy Sets and Systems, 164(21):25-44.
  22. Liu, Z., el haj, Z. C., and Shi, H. (2010). Control strategy design based on fuzzy logic and lqr for 3-dof helicopter model. In Proceedings of the IEEE International Conference on Intelligent Control and Information Processing, pages 262-266.
  23. Luo, C., Hu, D., Pang, Y., Zhu, X., and Dong, G. (2006). Fuzzy control of a quintuple inverted pendulum with the lqr method and 2-ary fuzzy piecewise interpolation function. In Proceedings of the 45th IEEE Conference on Decision and Control, pages 262-266.
  24. Márquez, J. M. A., na, A. J. B. P., and Arias, M. E. G. (2009). A general and formal methodology to design stable nonlinear fuzzy control systems. IEEE Transactions on Fuzzy Systems, 17(5):1081-1091.
  25. Michels, K., Klawonn, F., Kruse, R., and Nurnberger, A. (2006). Fuzzy Control: Fundamentals, Stability and Design of Fuzzy Controllers. Springer.
  26. Mohammadian, M., Amin, R., Yao, X., and Sarker, R. A. (2003). Computational Intelligence in Control. Idea Group Publishing.
  27. Mumford, C. L. and Jain, L. C. (2009). Computational Intelligence. Springer-Verlag.
  28. Nie, M. and Tan, W. W. (2011). A stable adaptive fuzzy pd plus pi controller for nonlinear uncertain systems. Elsevier Fuzzy Sets and Systems, 179(1):1-19.
  29. Pedrycz, W. and Gomide, F. (2007). Fuzzy Systems Engineering: Toward Human-Centric Computing. WileyIEEE Press, New Jersey.
  30. Preitl, S., Precup, R.-E., Clep, P. A., Ursache, I.-B., Fodor, J., and Skrjanc, I. (2008). Pole placement approaches for linear and fuzzy systems. In Proceedings of the 6th International Symposium on Intelligent Systems and Informatics (SISY 2008), pages 1-6.
  31. Serra, G. L. O. and Bottura, C. P. (2009). Fuzzy instrumental variable approach for nonlinear discrete-time systems identification in a noisy environment. Elsevier Fuzzy Sets and Systems, 160(4):500-520.
  32. Sheikholeslam, F. and Shekaramiz, M. (2011). Stability criterion for takagi-sugeno models. In Proceedings of the 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pages 261-266.
  33. Shi, A., Yan, M., Li, J., Xu, W., and Shi, Y. (2011). The research of fuzzy pid control application in dc motor of automatic doors. In Proceedings of the International Conference on Electrical and Control Engineering (ICECE), pages 1354-1358.
  34. Tanaka, K., Ikeda, T., and Wang, H. (1996). Design of fuzzy control systems based on relaxed lmi stability conditions. In Proceedings of the 35th Conference on Decision and Control, pages 598-603.
  35. Torres-Pinzón, C. A. and Leyva, R. (2009). Fuzzy control in dc-dc converters: an lmi approach. In Proceedings of the 35th Annual Conference of IEEE - Industrial Electronics (IECON'09), pages 510-515.
  36. Yuana, X., Fang, Z., and Li, H. (2010). Research on fuzzy control for the electro-hydraulic servo system. In Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2010), pages 918-921.
  37. Zhao, Y., amd Z. Wang, Q. S., and Han, X. (2004). Adaptive optimal control of a class of uncertain nonlinear systems using fuzzy logic and neural networks. In Proceedings of the 43rd IEEE International Conference on Decision and Control, pages 5094-5099.
  38. Zhao, Y., Sun, Q., Wang, Z., and Han, X. (2009). Robust fuzzy control for chaotic (hyperchaotic) systems with parametric uncertainties based on lmi technique. In Proceedings of the IEEE Chinese Control and Decision Conference, pages 344-348.
  39. Zhu, Q. M. and Ma, Z. (2006). A u-model enhanced pid controller for nonlinear dynamic plants. In Proceedings of the 6th World Congress on Intelligent Control and Automation, pages 1026-1029.
Download


Paper Citation


in Harvard Style

J. M. Santos R. and L. O. Serra G. (2012). A Proposal of Multiobjective Fuzzy Regulator Design for State Space Nonlinear Systems . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-21-1, pages 50-58. DOI: 10.5220/0004018300500058


in Bibtex Style

@conference{icinco12,
author={Rafael J. M. Santos and Ginalber L. O. Serra},
title={A Proposal of Multiobjective Fuzzy Regulator Design for State Space Nonlinear Systems},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2012},
pages={50-58},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004018300500058},
isbn={978-989-8565-21-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A Proposal of Multiobjective Fuzzy Regulator Design for State Space Nonlinear Systems
SN - 978-989-8565-21-1
AU - J. M. Santos R.
AU - L. O. Serra G.
PY - 2012
SP - 50
EP - 58
DO - 10.5220/0004018300500058