Mobile Robots Pose Tracking - A Set-membership Approach using a Visibility Information
Rémy Guyonneau, Sébastien Lagrange, Laurent Hardouin
2012
Abstract
This paper proposes a set-membership method based on interval analysis to solve the pose tracking problem. The originality of this approach is to consider weak sensors data: the visibility between two robots. By using a team of robots and this boolean information (two robots see each other or not), the objective is to compensate the odometry errors and be able to localize, in a guaranteed way, the robots in an indoor environment. This environment is supposed to be defined by two sets, an inner and an outer characterizations. Simulated results allow to evaluate the efficiency and the limits of the proposed method.
References
- Abeles, P. (2011). Robust local localization for indoor environments with uneven floors and inaccurate maps. In Intelligent Robots and Systems (IROS), 2011 IEEE/ RSJ International Conference on, pages 475 -481.
- E. Seignez, M. Kieffer, A. L. E. W. T. M. (2005). Experimental vehicle localization by bounded-error state estimation using interval analysis. In Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pages 1084 - 1089.
- J. Borenstein, H. R. Everett, L. F. (1996). Navigating Mobile Robots: Systems and Techniques. A. K. Peters, Ltd.
- J. Zhou, L. H. (2011). Experimental study on sensor fusion to improve real time indoor localization of a mobile robot. In Robotics, Automation and Mechatronics (RAM), 2011 IEEE Conference on, pages 258 -263.
- Jaulin, L. (2009). A nonlinear set membership approach for the localization and map building of underwater robots. Robotics, IEEE Transactions on, 25(1):88 - 98.
- K. Lingemann, A. Nchter, J. H. H. S. (2005). High-speed laser localization for mobile robots. Robotics and Autonomous Systems, 51(4):275 - 296.
- L. Jaulin, M. Kieffer, O. D. E. W. (2001). Applied Interval Analysis. Springer.
- M.J. Segura, V.A. Mut, H. P. (2009). Mobile robot selflocalization system using ir-uwb sensor in indoor environments. In Robotic and Sensors Environments, 2009. ROSE 2009. IEEE International Workshop on, pages 29 -34.
- Neumaier, A. (1991). Interval Methods for Systems of Equations (Encyclopaedia of Mathematics and its Applications). Cambridge University Press.
- P. Jensfelt, H. C. (2001). Pose tracking using laser scanning and minimalistic environmental models. Robotics and Automation, IEEE Transactions on, 17(2):138 -147.
- R. E. Moore, R. B. Kearfott, M. J. C. (2009). Introduction to Interval Analysis. SIAM.
Paper Citation
in Harvard Style
Guyonneau R., Lagrange S. and Hardouin L. (2012). Mobile Robots Pose Tracking - A Set-membership Approach using a Visibility Information . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 292-297. DOI: 10.5220/0004039702920297
in Bibtex Style
@conference{icinco12,
author={Rémy Guyonneau and Sébastien Lagrange and Laurent Hardouin},
title={Mobile Robots Pose Tracking - A Set-membership Approach using a Visibility Information},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={292-297},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004039702920297},
isbn={978-989-8565-22-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Mobile Robots Pose Tracking - A Set-membership Approach using a Visibility Information
SN - 978-989-8565-22-8
AU - Guyonneau R.
AU - Lagrange S.
AU - Hardouin L.
PY - 2012
SP - 292
EP - 297
DO - 10.5220/0004039702920297