(a) Random initial guess for local maps (b) GRASP based vehicle/landmark position
estimates
(c) I-SLSJF with EIF based initialization
(S. Huang and Frese, 2008)
Figure 6: DLR dataset results using GRASP with 200 local maps, showing global convergence (b) with random initial guesses
(a).
Future work will provide the time/memory com-
parison of the proposed approach and possible exten-
sion to 6DOF SLAM problem.
ACKNOWLEDGEMENTS
This work is supported by the ARC DP Project
(DP0987829) funded by the Australian Research
Council (ARC). We are also thankful to (J. Kurlbaum,
2010) and (S. Huang and Frese, 2008) for open source
implementation and datasets.
REFERENCES
A. Doucet, N. Freitas, K. M. and Russel, S. (2002). Black-
wellized particle filtering for dynamic bayesian net-
works. In International Conference on Uncertainty in
Artificial Intelligence, pp. 17618.
Bailey, T. and Durrant-Whyte, H. (2006). Simultaneous
localization and mapping (slam): part ii. In IEEE
Robotics and Automation Magazine, vol. 13, issue 3,
pp. 108-117.
C. Olsson, F. K. and Oskarsson, M. (2008). Branch and
bound methods for euclidean registration problems. In
IEEE Transactions on Pattern Analysis and Machine
Intelligence.
C.Blum and A.Roli (2003). Metaheuristics in combinatorial
optimization: Overview and conceptual comparison.
In ACM Computing Surveys, vol.35, no. 3.
Dellaert, F. and Kaess, M. (2006). Square root sam: si-
multaneous localization and mapping via square root
information smoothing. In Journal of Robotics Re-
search, vol. 25, no. 12, pp. 1181-1203.
E. Olson, J. L. and Teller, S. (2006). Fast iterative opti-
mization of pose graphs with poor initial estimates. In
IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 2262-2269.
Freund, R. and Jarr, F. (2001). Solving the sum-of-ratios
problem by an interior-point method. In Journal of
Global Optimization.
Iser, R. and Wahl, F. (2010). Antslam: global map optimiza-
tion using swarm intelligence. In IEEE International
Conference on Robotics and Automation (ICRA), pp.
265-272.
J. Kurlbaum, U. F. (2010). A benchmark data
set for data association. In Technical Re-
port, University of Bremen, Data Available on
http://cres.usc.edu/radishrepository/.
K. Astrom, O. Enqvist, C. O. F. K. and Hartley., R. (2007).
An l∞ approach to structure and motion problems in
1d-vision. In International Conference on Computer
Vision (ICCV).
K. Ni, D. Steedly, F. D. (2007). Tectonic sam: ex-
act, out-of-core, submap-based slam. In IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pp.16781685.
Lu, F. and Milios, E. (1997). Globally consistent range scan
alignment for environment mapping. In Journal of Au-
tonomous Robots, pp.333349.
R. Kummerle, G. Grisetti, H. S. K. K. and Burgard, W.
(2011). g2o: A general framework for graph optimiza-
tion. In IEEE International Conference on Robotics
and Automation (ICRA).
Resende, M. and Ribeiro., C. (2003). Greedy randomized
adaptive search procedures. In Handbook of Meta-
heuristics, pp. 219249.
S. Huang, Z. Wang, G. D. and Frese, U. (2008). Iterated
slsjf: A sparse local submap joining algorithm with
improved consistency. In Australiasan Conference on
Robotics and Automation (ACRA).
S. Huang, H. Wang, U. F. and Dissanayake, G. (2012). On
the number of local minima to the point feature based
slam problem. In IEEE International Conference on
Robotics and Automation (ICRA), pp. 265-272.
S. Huang, Z. W. and Dissanayake, G. (2008). Sparse lo-
cal submap joining filter for building large-scale maps.
In IEEE Transactions on Robotics, vol. 24, no. 5, pp.
1121-1130.
ICINCO2012-9thInternationalConferenceonInformaticsinControl,AutomationandRobotics
82