Figure 7: Velocity estimate errors in X-Y-Z directions.
Figure 8: Attitude estimate errors in X-Y-Z directions.
REFERENCES
Alexander, H. L. (1991). State estimation for distributed
systems with sensing delay. SPIE, 1470(1), 103-111.
doi:10.1117/12.44843.
Bonin-Fontand, F., Ortiz, A., and Oliver, G. (2008). Visual
navigation for mobile robots: A survey. Journal of
Intelligent and Robotic Systems, 53(3), 263-296.
Bottasso, C. L. and Leonello, D. (2009). Vision-augmented
inertial navigation by sensor fusion for an autonomous
rotorcraft vehicle. In AHS International Specialists
Meeting on Unmanned Rotorcraft. 324-334.
Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010).
Brief: Binary robust independent elementary features.
In 11th European Conference on Computer Vision.
LNCS Springer, 6314(3), 778-792.
Dalgleish, F. R., Tetlow, J. W., and Allwood, R. L. (2005).
Vision-based navigation of unmanned underwater ve-
hicles : a survey. part 2: Vision-basedstation-keeping
and positioning. In IMAREST Proceedings, Part B:
Journal of Marine Design and Operations. 8, 13-19.
Goedeme, T., Nuttin, M., Tuytelaars, T., and Gool, L. V.
(2007). Omnidirectional vision based topological nav-
igation. International Journal of Computer Vision,
74(3), 219-236.
Gopalakrishnan, A., Kaisare, N., and Narasimhan, S.
(2011). Incorporating delayed and infrequent mea-
surements in extended kalman filter based nonlinear
state estimation. Journal of Process Control, 21(1),
119-129.
Jianbo, S. and Tomasi, C. (1994). Good features to track.
In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE, 593-600.
Jones, E. S. and Soatto, S. (2011). Visual-inertial nav-
igation, mapping and localization: A scalable real-
time causal approach. The International Journal of
Robotics Research, 30(4), 407-430.
Junker, G. (2006). Pro OGRE 3D Programming. Springer-
Verlag, New York.
Larsen, T. D., Andersen, N. A., Ravn, O., and Poulsen, N.
(1998). Incorporation of time delayed measurements
in a discrete-time kalman filter. In 37th IEEE Confer-
ence on Decision and Control. IEEE, 3972-3977.
Liu, Y. C. and Dai, Q. H. (2010). Vision aided unmanned
aerial vehicle autonomy : An overview. In 3th Inter-
national Congress on Image and Signal Processing.
IEEE, 417-421.
Mourikis, A. I. and Roumeliotis, S. I. (2007). A multi-state
constraint kalman filter for vision-aided inertial navi-
gation. In IEEE International Conference on Robotics
and Automation. IEEE, 3565-3572.
Nister, D., Naroditsky, O., and Bergen, J. (2006). Visual
odometry for ground vehicle applications. Journal of
Field Robotics, 23(1), 3-20.
Pornsarayouth, S. and Wongsaisuwan, M. (2009). Sensor
fusion of delay and non-delay signal using kalman fil-
ter with moving covariance. In ROBIO’09, IEEE In-
ternational Conference on Robotics and Biomimetics.
2045-2049.
Qian, G., Chellappa, R., and Zheng, Q. (2001). Robust
structure from motion estimation using inertial data.
Journal of the Optical Society of America, 18(12),
2982-2997.
Roumeliotis, S. I., Johnson, A. E., and Montgomery, J. F.
(2002). Augmenting inertial navigation with image-
based motion estimation. In ICRA’02, IEEE Interna-
tional Conference on Robotics and Automation. IEEE,
4326-4333.
Tatiraju, S., Soroush, S., and Ogunnaike, B. A. (1999). Mul-
tirate nonlinear state estimation with application to a
polymerization reactor. AIChE Journal, 45(4), 769-
780.
Veth, M. J., Raquet, J. F., and Pachter, M. (2006). Stochastic
constraints for efficient image correspondence search.
Journal of IEEE Transactions on Aerospace Elec-
tronic Systems, 42(3), 973-982.
HandlingDelayedFusioninVision-AugmentedInertialNavigation
401