Integrating Kinect Depth Data with a Stochastic Object Classification Framework for Forestry Robots
Mostafa Pordel, Thomas Hellström, Ahmad Ostovar
2012
Abstract
In this paper we study the integration of a depth sensor and an RGB camera for a stochastic classification system for forestry robots. The images are classified as bush, tree, stone and human and are expected to come from a robot working in forest environment. A set of features is extracted from labeled images to train a number of stochastic classifiers. The outputs of the classifiers are then combined in a meta-classifier to produce the final result. The results show that using depth information in addition to the RGB results in higher classification performance.
References
- Chen, W., Shi, Y., and Xuan, G. (2007). Identifying computer graphics using hsv color model and statistical moments of characteristic functions. In Multimedia and Expo, 2007 IEEE International Conference on, pages 1123 -1126.
- Cucchiara, R., Grana, C., Piccardi, M., and Prati, A. (2003). Detecting moving objects, ghosts, and shadows in video streams. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(10):1337 - 1342.
- Davison, A. J., Reid, I. D., Molton, N. D. and Stasse, O. (2007). Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052-1067.
- De Stefano, C., Della Cioppa, A., and Marcelli, A. (2002). An adaptive weighted majority vote rule for combining multiple classifiers. In Pattern Recognition, 2002. Proceedings. 16th International Conference on, volume 2, pages 192 - 195 vol.2.
- Fang, Y., Lin, W., Lau, C. T., and Lee, B.-S. (2011). A visual attention model combining top-down and bottomup mechanisms for salient object detection. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 1293 -1296.
- Friedman, N., Geiger, D. and Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29(2-3):131-163.
- He, L., Wang, H., and Zhang, H. (2011). Object detection by parts using appearance, structural and shape features. In Mechatronics and Automation (ICMA), 2011 International Conference on, pages 489 -494.
- Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4- 37.
- James, G. and Stanford University. Dept. of Statistics (1998). Majority vote classifiers: theory and applications. Stanford University.
- Jimenez-Sanchez, A., Mendiola-Santibanez, J., TerolVillalobos, I., Herrera-Ruiz, G., Vargas-Vazquez, D., Garcia-Escalante, J., and Lara-Guevara, A. (2009). Morphological background detection and enhancement of images with poor lighting. Image Processing, IEEE Transactions on, 18(3):613 -623.
- Kokkinos, I., Maragos, P., and Yuille, A. (2006). Bottom-up amp; top-down object detection using primal sketch features and graphical models. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1893 - 1900.
- Lakshmi, J. and Punithavalli, M. (2009). A survey on skeletons in digital image processing. In Digital Image Processing, 2009 International Conference on, pages 260 -269.
- Li, R., Lu, J., Zhang, Y., Lu, Z., and Xu, W. (2009). A framework of large-scale and real-time image annotation system. In Artificial Intelligence, 2009. JCAI 7809. International Joint Conference on, pages 576 -579.
- Marcano-Cede ando, A., Quintanilla-Domi andnguez, J., Cortina-Januchs, M., and Andina, D. (2010). Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network. In IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pages 2845 - 2850.
- Pordel, M., Khalilzad, N., Yekeh, F., and Asplund, L. (2011). A component based architecture to improve testability, targeted fpga-based vision systems. In Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on, pages 601 -605.
- Robert S. Lynch Jr. and Peter K. Willett (2003). Use of bayesian data reduction for the fusion of legacy classifiers. Information Fusion, 4(1):23-34.
- Van den Bergh, M., Carton, D., De Nijs, R., Mitsou, N., Landsiedel, C., Kuehnlenz, K., Wollherr, D., Van Gool, L., and Buss, M. (2011). Real-time 3d hand gesture interaction with a robot for understanding directions from humans. In RO-MAN, 2011 IEEE, pages 357 -362.
- Van den Bergh, M. and Van Gool, L. (2011). Combining rgb and tof cameras for real-time 3d hand gesture interaction. In Applications of Computer Vision (WACV), 2011 IEEE Workshop on, pages 66 -72.
- Wang, J., Wu, Q., Deng, H., and Yan, Q. (2008). Realtime speech/music classification with a hierarchical oblique decision tree. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 2033 -2036.
- Xiao, Q., Hu, X., Gao, S., and Wang, H. (2010). Object detection based on contour learning and template matching. In Intelligent Control and Automation (WCICA), 2010 8th World Congress on, pages 6361 -6365.
- Zhang, J., Marszalek, M., Lazebnik, S., and Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73(2):213- 238.
- Zhang, H., Berg, A. C., Maire, M. and Malik, J. (2006). Svm-knn: Discriminative nearest neighbor classification for visual category recognition. volume 2, pages 2126-2136.
- Zhong, F., Capson, D., and Schuurman, D. (2008). Parallel architecture for pca image feature detection using fpga. In Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on, pages 001341 -001344.
Paper Citation
in Harvard Style
Pordel M., Hellström T. and Ostovar A. (2012). Integrating Kinect Depth Data with a Stochastic Object Classification Framework for Forestry Robots . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 314-320. DOI: 10.5220/0004045203140320
in Bibtex Style
@conference{icinco12,
author={Mostafa Pordel and Thomas Hellström and Ahmad Ostovar},
title={Integrating Kinect Depth Data with a Stochastic Object Classification Framework for Forestry Robots},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={314-320},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004045203140320},
isbn={978-989-8565-22-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Integrating Kinect Depth Data with a Stochastic Object Classification Framework for Forestry Robots
SN - 978-989-8565-22-8
AU - Pordel M.
AU - Hellström T.
AU - Ostovar A.
PY - 2012
SP - 314
EP - 320
DO - 10.5220/0004045203140320