Integrating Kinect Depth Data with a Stochastic Object Classification Framework for Forestry Robots

Mostafa Pordel, Thomas Hellström, Ahmad Ostovar

2012

Abstract

In this paper we study the integration of a depth sensor and an RGB camera for a stochastic classification system for forestry robots. The images are classified as bush, tree, stone and human and are expected to come from a robot working in forest environment. A set of features is extracted from labeled images to train a number of stochastic classifiers. The outputs of the classifiers are then combined in a meta-classifier to produce the final result. The results show that using depth information in addition to the RGB results in higher classification performance.

References

  1. Chen, W., Shi, Y., and Xuan, G. (2007). Identifying computer graphics using hsv color model and statistical moments of characteristic functions. In Multimedia and Expo, 2007 IEEE International Conference on, pages 1123 -1126.
  2. Cucchiara, R., Grana, C., Piccardi, M., and Prati, A. (2003). Detecting moving objects, ghosts, and shadows in video streams. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(10):1337 - 1342.
  3. Davison, A. J., Reid, I. D., Molton, N. D. and Stasse, O. (2007). Monoslam: Real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1052-1067.
  4. De Stefano, C., Della Cioppa, A., and Marcelli, A. (2002). An adaptive weighted majority vote rule for combining multiple classifiers. In Pattern Recognition, 2002. Proceedings. 16th International Conference on, volume 2, pages 192 - 195 vol.2.
  5. Fang, Y., Lin, W., Lau, C. T., and Lee, B.-S. (2011). A visual attention model combining top-down and bottomup mechanisms for salient object detection. In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Conference on, pages 1293 -1296.
  6. Friedman, N., Geiger, D. and Goldszmidt, M. (1997). Bayesian network classifiers. Machine Learning, 29(2-3):131-163.
  7. He, L., Wang, H., and Zhang, H. (2011). Object detection by parts using appearance, structural and shape features. In Mechatronics and Automation (ICMA), 2011 International Conference on, pages 489 -494.
  8. Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4- 37.
  9. James, G. and Stanford University. Dept. of Statistics (1998). Majority vote classifiers: theory and applications. Stanford University.
  10. Jimenez-Sanchez, A., Mendiola-Santibanez, J., TerolVillalobos, I., Herrera-Ruiz, G., Vargas-Vazquez, D., Garcia-Escalante, J., and Lara-Guevara, A. (2009). Morphological background detection and enhancement of images with poor lighting. Image Processing, IEEE Transactions on, 18(3):613 -623.
  11. Kokkinos, I., Maragos, P., and Yuille, A. (2006). Bottom-up amp; top-down object detection using primal sketch features and graphical models. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, volume 2, pages 1893 - 1900.
  12. Lakshmi, J. and Punithavalli, M. (2009). A survey on skeletons in digital image processing. In Digital Image Processing, 2009 International Conference on, pages 260 -269.
  13. Li, R., Lu, J., Zhang, Y., Lu, Z., and Xu, W. (2009). A framework of large-scale and real-time image annotation system. In Artificial Intelligence, 2009. JCAI 7809. International Joint Conference on, pages 576 -579.
  14. Marcano-Cede ando, A., Quintanilla-Domi andnguez, J., Cortina-Januchs, M., and Andina, D. (2010). Feature selection using sequential forward selection and classification applying artificial metaplasticity neural network. In IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pages 2845 - 2850.
  15. Pordel, M., Khalilzad, N., Yekeh, F., and Asplund, L. (2011). A component based architecture to improve testability, targeted fpga-based vision systems. In Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on, pages 601 -605.
  16. Robert S. Lynch Jr. and Peter K. Willett (2003). Use of bayesian data reduction for the fusion of legacy classifiers. Information Fusion, 4(1):23-34.
  17. Van den Bergh, M., Carton, D., De Nijs, R., Mitsou, N., Landsiedel, C., Kuehnlenz, K., Wollherr, D., Van Gool, L., and Buss, M. (2011). Real-time 3d hand gesture interaction with a robot for understanding directions from humans. In RO-MAN, 2011 IEEE, pages 357 -362.
  18. Van den Bergh, M. and Van Gool, L. (2011). Combining rgb and tof cameras for real-time 3d hand gesture interaction. In Applications of Computer Vision (WACV), 2011 IEEE Workshop on, pages 66 -72.
  19. Wang, J., Wu, Q., Deng, H., and Yan, Q. (2008). Realtime speech/music classification with a hierarchical oblique decision tree. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, pages 2033 -2036.
  20. Xiao, Q., Hu, X., Gao, S., and Wang, H. (2010). Object detection based on contour learning and template matching. In Intelligent Control and Automation (WCICA), 2010 8th World Congress on, pages 6361 -6365.
  21. Zhang, J., Marszalek, M., Lazebnik, S., and Schmid, C. (2007). Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73(2):213- 238.
  22. Zhang, H., Berg, A. C., Maire, M. and Malik, J. (2006). Svm-knn: Discriminative nearest neighbor classification for visual category recognition. volume 2, pages 2126-2136.
  23. Zhong, F., Capson, D., and Schuurman, D. (2008). Parallel architecture for pca image feature detection using fpga. In Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on, pages 001341 -001344.
Download


Paper Citation


in Harvard Style

Pordel M., Hellström T. and Ostovar A. (2012). Integrating Kinect Depth Data with a Stochastic Object Classification Framework for Forestry Robots . In Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-22-8, pages 314-320. DOI: 10.5220/0004045203140320


in Bibtex Style

@conference{icinco12,
author={Mostafa Pordel and Thomas Hellström and Ahmad Ostovar},
title={Integrating Kinect Depth Data with a Stochastic Object Classification Framework for Forestry Robots},
booktitle={Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2012},
pages={314-320},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004045203140320},
isbn={978-989-8565-22-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Integrating Kinect Depth Data with a Stochastic Object Classification Framework for Forestry Robots
SN - 978-989-8565-22-8
AU - Pordel M.
AU - Hellström T.
AU - Ostovar A.
PY - 2012
SP - 314
EP - 320
DO - 10.5220/0004045203140320