flocks. IEEE Trans. on Automatic Control, 52(5):852–
862.
Dimarogonas, D. and Kyriakopoulos, K. (2006a). On the
state agreement problem for multiple unicycles. In
American Control Conference, 2006, page 6 pp.
Dimarogonas, D. and Kyriakopoulos, K. (2006b). On the
state agreement problem for multiple unicycles with
varying communication links. In Decision and Con-
trol, 2006 45th IEEE Conference on, pages 4283 –
4288.
Dimarogonas, D. and Kyriakopoulos, K. (2007). Connec-
tivity preserving state agreement for multiple unicy-
cles. In American Control Conference, 2007. ACC
’07, pages 1179 –1184.
Dong, W. and Farrell, J. (2008). Cooperative control of mul-
tiple nonholonomic mobile agents. Automatic Con-
trol, IEEE Transactions on, 53(6):1434 –1448.
D’Orsogna, M. R., Chuang, Y.-L., Bertozzi, A. L., and
Chayes, L. (2006). Self-propelled particles with soft-
core interactions: patterns, stability, and collapse.
Physical Review Letters.
Helbing, D., Farkas, I., and Vicsek, T. (2000). Simulating
dynamical features of escape panic. Nature, 407:487–
490.
Levine, H., Rappel, W.-J., and Cohen, I. (2001). Self-
organization in systems of self-propelled particles.
Phys, Rev. E, 63:017101.
Mogilner, A. and Edelstein-Keshet, L. (1999). A non-local
model for a swarm. J. Math. Biology, 38:534–570.
Moshtagh, N. and Jadbabaie, A. (2007). Distributed
geodesic control laws for flocking of nonholo-
nomic agents. IEEE Trans. on Automatic Control,
52(4):681–686.
Olfati-Saber, R. (2002). Near-Identity diffeomorphisms
and exponential ε-tracking and ε-stabilization of first-
order nonholonomic SE(2) vehicles. Proc. of the 2002
American Control Conference, 6:4690–4695.
Olfati-Saber, R. (2006). Flocking for Multi-Agent Dynamic
Systems: Algorithms and Theory. IEEE Trans. on Au-
tomatic Control, 51(3):401–420.
Parrish, J. K., Viscido, S. V., and Grunbaum, D. (2002).
Self-organized fish schools: an examination of emer-
gent properties. Biol. Bull., 202:296–305.
Partridge, B. L. (1982). The structure and function of fish
schools. Scientific American, 246(6):114–123.
Potss, W. K. (1984). The chorus-line hypothesis of maneu-
ver in avian flocks. Nature, 309:344–345.
Regmi, A., Sandoval, R., Byrne, R., Tanner, H., and Abdal-
lah, C. (2005). Experimental implementation of flock-
ing algorithms in wheeled mobile robots. In American
Control Conference, 2005. Proceedings of the 2005,
pages 4917 – 4922 vol. 7.
Reynolds, C. W. (1987). Flocks, herds, and schools: a dis-
tributed behavioral model. Computer Graphics (ACM
SIGGRAPH ’87 Conference Proceedings), 21(4):25–
34.
Shaw, E. (1975). Fish in schools. Natural History,
84(8):40–45.
Shimoyama, N., Sugawara, K., Mizuguchi, T., Hayakawa,
Y., and Sano, M. (1996). Collective motion in a
system of motile elements. Physical Review Letters,
76(20):3870–3873.
Tanner, H., Jadbabaie, A., and Pappas, G. (2005). Flock-
ing in teams of nonholonomic agents. In Kumar,
V., Leonard, N., and Morse, A., editors, Cooperative
Control, volume 309 of Lecture Notes in Control and
Information Sciences, pages 458–460. Springer Berlin
/ Heidelberg.
Toner, J. and Tu, Y. (1998). Flocks, herds, and schools:
A quantitative theory of flocking. Physical Review E,
58(4):4828–4858.
Topaz, C. M. and Bertozzi, A. L. (2004). Swarming patterns
in a two-dimensional kinematic model for biological
groups. SIAM J. Appl. Math.
Vicsek, T., Cziro
´
ok, A., Ben-Jacob, E., Cohen, I., and
Shochet, O. (1995). Novel type of phase transition in
a system of self-deriven particles. Phys. Rev. Letters,
75(6):1226–1229.
FlockingforNetworksofMobileRobotswithNonlinearDynamics
359