These are the first 160 partial quotients of
E
N
:
328652075741682697961546789483959181844, 1, 27, 1,
1, 1, 1, 3, 1, 96, 9, 3, 1, 2, 1, 1, 2, 1, 4, 3, 1, 1, 4, 2, 1, 1, 1,
3, 1, 4, 3, 3, 1, 5, 5, 35, 93, 1, 2, 1, 50, 1, 6, 1, 18, 1, 4, 3, 1,
1, 8, 1, 2, 1, 1, 15, 1, 1, 17, 1, 10, 1, 8, 9, 2, 2, 3, 5, 1, 2, 1,
4, 1, 7, 5, 6, 1, 4, 2, 1, 8, 1, 2, 3, 1, 167, 2, 1, 2, 1, 1, 4, 83,
1, 39, 1, 4, 4, 1, 2, 3, 4, 1, 1, 3, 4, 1, 4, 3, 2, 2, 3, 1, 1, 1, 9,
10, 1, 1, 5, 1, 1, 1, 1, 11, 1, 2, 5, 3, 1, 5, 2, 1, 2, 6, 6, 1, 3, 1,
2, 2, 3, 1, 1, 10, 1, 14, 1, 1, 1, 3, 2, 1, 8, 6, 2, 1, 2, 32, 1, ...
.
The correct match for K, d are found to be:
K = 3070987483608851575982136048729894369853
4219871516636651327662263788394181486258
215892561331634184862899678187125943
d = 9344190133832039329908147240511603850575
5034440689899579037402947439951867059
This reveals the prime factors:
p = 1166663251661268725389428824859985517545
9908219624903472802403412154892075707775
6374879316119253701312036058191983768080
80007811078043670884807797534409911
q = 1166663251661268725336788995672885969781
2927977819680784988846996724342996653178
7411501168071305034508471832382745635149
76500711474673711625513687790363311.
The values δ and β are also calculated,
δ ≈ 0.249796 <
1
4
and β ≈ 0.437217 <
7
16
.
This shows that the range of weak keys has been
slightly reduced.
The next example illustrates an instance where the
secret key d can be found beyond the expected bound.
Example 2: E = e+ σϕ(N), with σ = 1024 Given
the public key pair (E,N) as follows:
E = 8012376714025878357440941612240451226789
0791942096897899946588168355428594094184
5061181447285536558728607532595384614286
3319668080055405832203067073913077206415
1981240378734125396032476391897771717839
8820453182176280588447463505434327708387
9171785105345860294406474630477546282382
2809174314987563975138481387989
N = 7818698191737701140183794353099300460937
4874139988345505285292453980805767409916
8941897484632146251708594501064287176001
1783827092047583047572306308365275614833
5571512000452112721211954037224024252600
6261468265126625396332752868126228267183
5447353400369974141018700284783931591799
8566887250342874340484010853.
Invoke Attack Algorithm with (E,N) as input.
These are the first 170 partial quotients of
E
N
:
1024, 1, 3, 2, 1, 2, 3, 5, 1, 4, 1, 6, 1, 19, 1, 2, 1, 2, 2, 2, 5,
2, 16, 27, 1, 3, 11, 2, 1, 5, 3, 2, 1, 7, 2, 2, 1, 3, 1, 2, 3, 2, 2,
13, 213, 1, 21, 1, 3, 3, 10, 1, 9, 8, 4, 2, 1, 14, 2, 1, 33, 1, 1,
1, 7, 1, 42, 6, 1, 1, 326, 2, 3, 13, 6, 4, 4, 8, 1, 2, 5, 1, 2, 2, 2,
1, 1, 5, 4, 1, 3, 1, 2, 1, 14, 7, 57, 1, 1, 10, 2, 2, 3, 2, 58, 13,
2, 25, 2, 1, 8, 3, 1, 4, 4, 1, 1, 7, 1, 1, 5, 1, 4, 50, 21, 7, 28, 2,
4, 1, 2, 2, 1, 1, 1, 4, 3, 2, 11, 5, 4, 19, 1, 2, 1, 3, 10, 1, 14, 1,
1, 18, 6, 1, 14, 9, 1, 6, 1, 1, 2, 3, 1, 3, 1, 2, 7, 16, 2, 1, ...
.
The correct match for K, d are found to be:
K = 313502095308421820319312187072648398207
503241292725274374998886089540461751327
79281610521901824857
d = 305923991492197993569398452307744493597
067975876384134442848163832956575217972
52658495003050969.
This reveals the prime factors:
p = 884234029640213583459288805558955205223
615402467727593575790821189784625657565
240795770464454149022686841858476837415
4372317409696092611240744813864770711
q = 884234029640213583417486079216384023929
224609757928703058502403539769379524876
433776448394874081644022996403747254411
2092849602164528666613060910519239523.
The values δ and β are also calculated,
δ ≈ 0.306878 <
5
16
and β ≈ 0.437234 <
7
16
.
This shows that the range of weak keys can be found
5 bits beyond the proven value.
Example 3: Consider a pragmatic scenario of the
mutual authentication between the smart card and ter-
minal. To authenticate the smart card, suppose the
terminal sends a (64-bit) random number Rnd as a
challenge to the smart card. Assume that the public
key pair (E,N) of the smart card is given in Example
2. Since d is known, the intercepted ciphertext C can
be decrypted, as follows:
ExtensionofdeWeger'sAttackonRSAwithLargePublicKeys
151