netflows. We observed that the Kullback-Leibler met-
ric seems to be the best suited to analyze huge amount
of traffic, since it has been able to detect DoS and
DDoS activity, maintaining a low level of false posi-
tives.
An interesting challenge is the formal definition of
a threshold value, whose correctness distinguish legit-
imate and malicious activities. In the future we plan
to release an obfuscated version of our dataset provid-
ing the community with a common ground, where the
proposed solutions can be fairly compared.
REFERENCES
Chan, Y.-T. F., Shoniregun, C. A., and Akmayeva, G. A.
(2008). A netflow based internet-worm detecting sys-
tem in large network. In Pichappan, P. and Abraham,
A., editors, ICDIM, pages 581–586. IEEE.
Chang, C. I., Du, Y., Wang, J., Guo, S. M., and Thouin,
P. D. (2006). Survey and comparative analysis of en-
tropy and relative entropy thresholding techniques. Vi-
sion, Image and Signal Processing, IEE Proceedings
-, 153(6):837–850.
Choo, K.-K. R. (2010). High tech criminal threats to the
national information infrastructure. Inf. Secur. Tech.
Rep., 15:104–111.
Cisco Systems (2004). Cisco Systems NetFlow Services
Export Version 9. rfc3954.
Cisco Systems (2010). Cisco 2010 Annual Security Report,
Highlighting global security threats and trends.
http://www.cisco.com/en/US/prod/vpndevc/annual
security report.html.
Curtmola, R., Sorbo, A. D., Ateniese, G., and Del, A.
(2005). On the performance and analysis of dns se-
curity extensions. In in Proceedings of CANS, pages
288–303. SpringerVerlag.
Di Pietro, R. and Mancini, L. V. (2008). Intrusion Detection
Systems. Springer-Verlag.
Di Pietro, R., Oligeri, G., Soriente, C., and Tsudik, G.
(2010). Intrusion-Resilience in Mobile Unattended
WSNs. In INFOCOM, pages 2303–2311. IEEE.
D¨ubendorfer, T., Wagner, A., and Plattner, B. (2005). A
framework for real-time worm attack detection and
backbone monitoring. In IWCIP 2005.
Feinstein, L. and Schnackenberg, D. (2003). Statistical ap-
proaches to DDOS attack detection and response. In
In Proceedings of the DARPA Information Survivabil-
ity Conference and Exposition, pages 303–314.
Hugh, J. M. (2000). Testing intrusion detection systems: a
critique of the 1998 and 1999 DARPA intrusion detec-
tion system evaluations as performed by lincoln labo-
ratory. ACM Trans. Inf. Syst. Secur., 3:262–294.
Lawniczak, A. T., Di Stefano, B. N., and Wu, H. (2009).
Detection & study of DDoS attacks via entropy in
data network models. CISDA’09, pages 59–66, Pis-
cataway, NJ, USA. IEEE Press.
Li, K., Zhou, W., and Yu, S. (2009a). Effective met-
ric for detecting distributed denial-of-service attacks
based on information divergence. IET Communica-
tions, 3(12):1851–1860.
Li, K., Zhou, W., Yu, S., and Dai, B. (2009b). Effec-
tive DDOS attacks detection using generalized en-
tropy metric. ICA3PP ’09, pages 266–280, Berlin,
Heidelberg. Springer-Verlag.
Mirkovic, J. and Reiher, P. (2004). A taxonomy of DDOS
attack and DDOS defense mechanisms. SIGCOMM
Comput. Commun. Rev., 34:39–53.
No, G. and Ra, I. (2009). An efficient and reliable DDOS
attack detection using a fast entropy computation
method. ISCIT’09, pages 1223–1228, Piscataway, NJ,
USA. IEEE Press.
Nychis, G., Sekar, V., Andersen, D. G., Kim, H., and Zhang,
H. (2008). An empirical evaluation of entropy-based
traffic anomaly detection. IMC ’08, pages 151–156,
New York, NY, USA. ACM.
Oshima, S., Nakashima, T., and Sueyoshi, T. (2010). DDoS
detection technique using statistical analysis to gen-
erate quick response time. BWCCA ’10, pages 672–
677, Washington, DC, USA. IEEE Computer Society.
Sardana, A., Joshi, R., and Kim, T.-h. (2008). Deciding
optimal entropic thresholds to calibrate the detection
mechanism for variable rate DDOS attacks in ISP do-
main. In ISA, pages 270–275, Washington, DC, USA.
IEEE Computer Society.
Sekar, V. and Merwe, J. V. D. (2006). Lads: Large-scale au-
tomated ddos detection system. In In Proc. of USENIX
ATC, pages 171–184.
Shannon, C. E. (1948). A mathematical theory of commu-
nication. The Bell system technical journal, 27:379–
423.
Xiang, Y., Li, K., and Zhou, W. (2011). Low-rate DDOS at-
tacks detection and traceback by using new informa-
tion metrics. In Information Forensics and Security,
IEEE Transactions, volume 99. IEEE Press.
DDoSDetectionwithInformationTheoryMetricsandNetflows-ARealCase
181