Filippone, G., Spataro, W., Spingola, G., D’Ambrosio, D.,
Rongo, R., Perna, G., and Di Gregorio, S. (2011).
GPGPU programming and cellular automata: Imple-
mentation of the sciara lava flow simulation code. In
23rd European Modeling and simulation Symposium
(EMSS), Rome, Italy.
Forthofer, J., Shannon, K., and Butler, B. (2009). Simu-
lating diurnally driven slope winds with windninja. In
Proceedings of 8th Symposium on Fire and Forest Me-
teorological Society - Kalispell, MT.
French, I., Anderson, D., and Catchpole, E. (1990). Graphi-
cal simulation of bushfire spread. Mathematical Com-
puter Modelling, 13:67–71.
Johnston, P., Kelso, J., and Milne, G. (2008). Efficient sim-
ulation of wildfire spread on an irregular grid. Inter-
national Journal of Wildland Fire, 17:614–627.
Kourtz, P. H. and O’Regan, W. G. (1971). A model for a
small forest fire to simulate burned and burning ar-
eas for use in a detection model. Forest Science,
17(7):163–169.
Krger, F., Maitre, O., Jimenez, S., Baumes, L., and Collet, P.
(2010). Speedups between x70 and x120 for a generic
local search (memetic) algorithm on a single gpgpu
chip. In Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M.,
Ek
´
art, A., Esparcia-Alcazar, A., Goh, C.-K., Merelo,
J., Neri, F., Preu, M., Togelius, J., and Yannakakis, G.,
editors, EvoNum 2010, volume 6024 of LNCS, pages
501–511. Springer Berlin / Heidelberg.
Lopes, A. M. G., Cruz, M. G., and Viegas, D. X. (2002).
Firestation - an integrated software system for the
numerical simulation of fire spread on complex to-
pography. Environmental Modelling and Software,
17(3):269–285.
McAlpine, R., Lawson, B., and Taylor, E. (1991). Fire
spread across a slope. In Proceedings of the 11th
Conference on Fire and Forest Meteorology (Society
of American Foresters: Bethesda, MD), pages 218–
225.
Miyamoto, H. and Sasaki, S. (1997). Simulating lava flows
by an improved cellular automata method. Computers
& Geosciences, 23(3):283–292.
NVidia corp. (2010). CUDA C Programming Guide v. 3.2.
NVidia corp. (2012). CUDA C Best Practices Guide.
O’Regan, W. G., Kourtz, P., and Nozaki, S. (1976). Bias
in the contagion analog to fire spread. Forest Science,
22.
Pallipuram, V., Bhuiyan, M., and Smith, M. (2011). A com-
parative study of GPU programming models and ar-
chitectures using neural networks. The Journal of Su-
percomputing, pages 1–46.
Peterson, S. H., Morais, M. E., Carlson, J. M., Denni-
son, P. E., Roberts, D. A., Moritz, M. A., and Weise,
D. R. (2009). Using HFIRE for spatial modeling of
fire in shrublands. Technical Report PSW-RP-259,
U.S. Department of Agriculture, Forest Service, Pa-
cific Southwest Research Station, Albany, CA.
Preis, T. (2011). GPU-computing in econophysics and sta-
tistical physics. The European Physical Journal - Spe-
cial Topics, 194(1):87–119.
Roberts, M., Sousa, M. C., and Mitchell, J. R. (2010). A
work-efficient gpu algorithm for level set segmenta-
tion. In ACM SIGGRAPH 2010 Posters, SIGGRAPH
’10, pages 53:1–53:1, New York, NY, USA. ACM.
Rongo, R., Lupiano, V., Avolio, M. V., D’Ambrosio, D.,
Spataro, W., and Trunfio, G. A. (2011). Cellular au-
tomata simulation of lava flows - applications to civil
defense and land use planning with a cellular automata
based methodology. In Kacprzyk, J., Pina, N., and
Filipe, J., editors, SIMULTECH 2011, pages 37–44.
SciTePress.
Rongo, R., Spataro, W., D’Ambrosio, D., Avolio, M. V.,
Trunfio, G. A., and Gregorio, S. D. (2008). Lava flow
hazard evaluation through cellular automata and ge-
netic algorithms: an application to mt etna volcano.
Fundam. Inform., 87(2):247–267.
Rothermel, R. C. (1972). A mathematical model for pre-
dicting fire spread in wildland fuels. Technical Re-
port INT-115, U.S. Department of Agriculture, Forest
Service, Intermountain Forest and Range Experiment
Station, Ogden, UT.
Rothermel, R. C. (1983). How to predict the spread and in-
tensity of forest and range fires. Technical Report INT-
143, U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station,
Ogden, UT.
Sullivan, A. (2009). Wildland surface fire spread mod-
elling, 1990-2007. 3: Simulation and mathematical
analogue models. International Journal of Wildland
Fire, 18:387–403.
Szerwinski, R. and G
¨
uneysu, T. (2008). Exploiting the
power of GPUs for asymmetric cryptography. In Pro-
ceedings of the 10th International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES
2008), pages 79–99, Washington, DC, USA.
Trunfio, G. A. (2004). Predicting wildfire spreading through
a hexagonal cellular automata model. In Sloot,
P. M. A., Chopard, B., and Hoekstra, A. G., edi-
tors, ACRI, volume 3305 of LNCS, pages 385–394.
Springer.
Trunfio, G. A., D’Ambrosio, D., Rongo, R., Spataro, W.,
and Gregorio, S. D. (2011). A new algorithm for simu-
lating wildfire spread through cellular automata. ACM
Trans. Model. Comput. Simul., 22(1):6.
Yassemi, S., Dragicevic, S., and Schmidt, M. (2008). De-
sign and implementation of an integrated GIS-based
cellular automata model to characterize forest fire be-
haviour. Ecological Modelling, 210(1-2):71–84.
FastAssessmentofWildfireSpatialHazardwithGPGPU
269