Figure 4: Pdf estimation of a beta distribution by Plug-in
Diffeomorphism Kernel Density estimator (DKDE).
Figure 5: Pdf estimation of a uniform distribution by Plug-
in Kernel Density estimator (KDE).
Figure 6: Pdf estimation of an exponential distribution by
Plug-in Diffeomorphism Kernel Density Estimator
(DKDE).
7 CONCLUSIONS
In this work, we have generalized the plug-in algo-
rithm which adjusts the smoothing parameter of the
kernel pdf estimate, to the diffeomorphism kernel
estimate version. Such modified plug-in algorithm
comes from the optimization of the MISE of this
estimate. This generalization gives a more compli-
cated iterative algorithm since the values of two
parameters depending on the unknown pdf have to
be approximated along iterations instead of only one
parameter on the classical plug-in. It is important to
note that the convergence is obtained for the pro-
posed algorithm. By simulations concerning differ-
ent kinds of distributions confined to bounded or
semi bounded supports, we illustrate the better per-
formance of the proposed Plug-in Diffeomorphism
Kernel pdf estimate in the sense of MISE.
In our future works, we intend to study the case
of multivariate bounded support distributions. We
also test this well performance estimate in real data.
REFERENCES
Ghorbel, F., Derrode, S., Alata, O., 2012. Récentes avan-
cées en reconnaissance de forme statistique. Arts-Pi
editions, Tunis.
Parzen, E., 1962. On estimation of a probability density
function and mode. Annals of mathematical statistics,
33, pp. 1065-1076.
Hall, P., (1982). Comparison of two orthogonal series
methods of estimating a density and its derivatives on
interval. J. Multivariate anal., 12, pp. 432 – 449.
Saoudi, S., Ghorbel, F., Hillion, A., (1994). Non paramet-
ric probability density function estimation on a bound-
ed support: applications to shape classification and
speech coding. Applied Stochastic Models and Data
Analysis, 10, pp. 215-231.
Saoudi, S., Ghorbel, F., Hillion, A., (1997). Some statisti-
cal properties of the Kernel-diffeomorphism estimator.
Applied Stochastic Models and Data Analysis,10, pp.
39-58.
Ghorbel, F., (2011). Vers une approche mathématique
unifiée des aspects géométriques et statistiques de la
reconnaissance de formes planes. Arts-Pi éditions,
Tunis, 2
d
edition.
Jones, M. C., Marron, J. S., Seather, S. J., (1996). A brief
survey of bandwidth selection for density estimation.
J. Amer. Stat. Assoc., 91, pp. 401 – 407
Bowman, A.W., Azzalini, A.,(1997). Applied Smoothing
Techniques for Data Analysis. Oxford University
Press.
Hall, P., Marron, J. S., (1987). Estimation of integrated
squared density derivatives. Statistics &Probability
letters, 6, pp. 109 – 115.
Troudi, M., Alimi, A. M., Saoudi, S., (2008). Analytical
Plug-in Method for Kernel Density Estimator Applied
to Genetic Neutrality Study. Eurasip Journal of ad-
vances in Signal Processing (Eurasip-JASP), 2008,
Article ID 739082, 8 pages doi: 10.1155/2008/739082.
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Plug-in diffeomorphism kernel pdf estimator
f
f estimated
-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0
2
4
6
8
10
12
Plug-in Kernel pdf estimate
f
f es timated
-0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0
2
4
6
8
10
12
Plug-in Diffeomorphism Kernel pdf estimate
f
f estimate
OptimisationofSmoothingParameterofDiffeomorphismKernelEstimateforBoundedRandomData
61