Raw Camera Image Demosaicing using Finite Impulse Response Filtering on Commodity GPU Hardware using CUDA

Patrik Goorts, Sammy Rogmans, Philippe Bekaert

2012

Abstract

In this paper, we investigate demosaicing of raw camera images on parallel architectures using CUDA. To generate high-quality results, we use the method of Malvar et al., which incorporates the gradient for edgesensing demosaicing. The method can be implemented as a collection of finite impulse response filters, which can easily be mapped to a parallel architecture. We investigated different trade-offs between memory operations and processor occupation to acquire maximum performance, and found a clear difference in optimization principles between different GPU architecture designs. We show that trade-offs are still important and not straightforward when using systems with massive fast processors and slower memory.

References

  1. Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., and Yelick, K. A. (2006). The Landscape of Parallel Computing Research: A View From Berkeley. Electrical Engineering and Computer Sciences, University of California at Berkeley, 18(183):19.
  2. Goorts, P., Rogmans, S., and Bekaert, P. (2009). Optimal data distribution for versatile finite impulse response filtering on next-generation graphics hardware using cuda. In Parallel and Distributed Systems (ICPADS), 2009 15th International Conference on, pages 300- 307. IEEE.
  3. Hirakawa, K. and Parks, T. (2005). Adaptive homogeneitydirected demosaicing algorithm. Image Processing, IEEE Transactions on, 14(3):360-369.
  4. Laroche, C. and Prescott, M. (1994). Apparatus and method for adaptively interpolating a full color image utilizing chrominance gradients. US Patent 5,373,322.
  5. Malvar, H., He, L., and Cutler, R. (2004). High-quality linear interpolation for demosaicing of bayer-patterned color images. In Acoustics, Speech, and Signal Processing, 2004. Proceedings.(ICASSP'04). IEEE International Conference on, volume 3, pages 485-488. IEEE.
  6. McGuire, M. (2008). Efficient, high-quality bayer demosaic filtering on gpus. Journal of Graphics, GPU, and Game Tools, 13(4):1-16.
Download


Paper Citation


in Harvard Style

Goorts P., Rogmans S. and Bekaert P. (2012). Raw Camera Image Demosaicing using Finite Impulse Response Filtering on Commodity GPU Hardware using CUDA . In Proceedings of the International Conference on Signal Processing and Multimedia Applications and Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2012) ISBN 978-989-8565-25-9, pages 96-101. DOI: 10.5220/0004075900960101


in Bibtex Style

@conference{sigmap12,
author={Patrik Goorts and Sammy Rogmans and Philippe Bekaert},
title={Raw Camera Image Demosaicing using Finite Impulse Response Filtering on Commodity GPU Hardware using CUDA},
booktitle={Proceedings of the International Conference on Signal Processing and Multimedia Applications and Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2012)},
year={2012},
pages={96-101},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004075900960101},
isbn={978-989-8565-25-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Signal Processing and Multimedia Applications and Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2012)
TI - Raw Camera Image Demosaicing using Finite Impulse Response Filtering on Commodity GPU Hardware using CUDA
SN - 978-989-8565-25-9
AU - Goorts P.
AU - Rogmans S.
AU - Bekaert P.
PY - 2012
SP - 96
EP - 101
DO - 10.5220/0004075900960101