
P²E: A Tool for the Evolution Management of UML Profiles

Fadoi Lakhal
1
, Hubert Dubois

1
 and Dominique Rieu

2

1CEA, LIST, Laboratoire d’Ingénierie dirigée par les modèles pour les Systèmes Embarqués,

91191 Gif-sur-Yvette Cedex, France
2Laboratoire d'informatique de Grenoble, Equipe SIGMA, 220 Rue de la Chimie,

BP 53, 38041 Grenoble Cedex 9, France

Keywords: Abstract Syntax, Modelling Language, UML Profile Evolution, Evolutions Classification, Impact

Classification, Models Migration.

Abstract: UML profiles are a frequently used alternative to describe the abstract syntax of modelling languages. As

any abstract syntax, UML profiles evolve through time. As the UML profiles are used by models, their

evolutions may have a direct impact on them. In order to manage these evolutions, a specific treatment is

needed. The models have then to be fitted to the new profiles version. The manual adaptation cost of these

models may be as important as building the adapted models from scratch. In this paper, we deal with

reducing the cost of models adaptation fitting the conducted evolution of the UML profiles. We provide an

automatic treatment using a specific tool. The P²E tool has the ability to detect the changes occurred on the

UML profiles, to classify them according to their impacts on the models and finally to adapt the models to

the new version of the UML profile.

1 INTRODUCTION

In Model Driven Engineering, the abstract syntax of

the modelling languages is usually described by

means of metamodels (Kleppe, 2007). Creating new

metamodels implies reusing the basic concepts, for

example the Class concept, the State or Operation

ones. This means that basic concepts have to be

created as many as we need for a given metamodel

we want to create. In order to avoid this problem,

UML proposes the profile mechanism (UML 2.4,

2011). A UML profile consists in describing an

abstract syntax of a modelling language by

extending the UML language’s concepts (defined in

the UML metamodel). The UML concepts are then

specialized by specific stereotypes to fit the concepts

of the specific domain. More than just avoiding

defining basic concepts, the profile mechanism gives

the designer the ability to use the existing UML

tools instead of building new ones.

As any abstract syntax, a profile may evolve

regularly for several reasons such as the emergence

of new concepts, modifications of existing concepts

or reorganization of its structure. A manual

management of these evolutions is usually tedious

and complex. This complexity varies according to

the evolution kind (atomic, composite) and the

impact on the models that used the profile. Indeed,

an evolution can be seen as an atomic operation (one

independent change on the profile) or as a composite

evolution (concatenation of atomic operations

dependent on each other). If all the evolutions are

treated as atomic operations, this dependence

relation will be then lost. Information will be lost

and the models adaptation in order to ensure their

compliance with the new profile version will be then

more complicated to manage. One of the major

issues is that the existing models conform to the

initial profile version become unusable if we do not

manage atomic and composite evolutions.

In this paper, we propose to automate the profile

evolution and their consequent impact on the models

using it. The P²E tool aims at facilitating the profile

and models co-evolution (Mens, 2008) by:

 Adapting the models to keep the compliance

with their evolved profile. By definition, a

model is complying with an abstract syntax

described as a UML profile in our case.

 Improving the models for a better description

of the modelled system. This means that

when the profile evolution consists in an

improvement, the models using this profile

should then be enhanced as well.

P²E tool is implemented as a Papyrus plugin

211Lakhal F., Dubois H. and Rieu D..
PÂšE: A Tool for the Evolution Management of UML Profiles.
DOI: 10.5220/0004081002110217
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 211-217
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

(Papyrus, 2012) and is based on three main

operations:

 The automatic detection of the atomic and

composites evolutions for a better

management of their impacts.

 The migration operation used to adapt the

models to the new profile version. The

migration should be as automated as possible.

 The optimization operation: it consists in

improving the models in order to give a better

representation of the system (i.e. to improve

the model meaning). This operation is semi-

automated by the fact that the alerts and

recommendations are processed in interaction

with the model designer.

This paper is organized as follows: section 2

presents some existing tools, technics and our

approach positions. Section 3 gives a classification

of the profile evolutions. Section 4 details the

adaptation process in P²E tool on an illustrating

example. Finally, section 5 concludes the paper and

put some future research directions forward.

2 EXISTING TOOLS

Existing tools consider the evolutions when the

abstract syntax is described as a metamodel. None of

them treat the case of evolution of UML profiles.

Nevertheless, we studied how adaptable they could

be for this use. We evaluate these tools according to

four criteria that interest us:

- The differences between two metamodel

versions: are they collected during the evolution

or a posteriori of the evolution?

- What is the role of the model designer in the

approach?

- What kind of changes treats the tool (atomic or

composite)?

- Do they propose a classification of the changes?

Hermandosfer et al. proposed a tool called

COPE (Hermandosfer et al., 2008). This system

records all the atomic changes detected during a

metamodel evolution and attaches to each atomic

change a migration operation. This migration

operation is specific to a change and specified

programmatically by the metamodel designer. By

the fact that COPE treats the changes directly after

the detection, it doesn’t have interest to classify

these changes. So, it doesn’t propose a classification

of changes impact. Our approach is dedicated to

models designers who do not participate to the

profile evolution but only have the different profile

versions. So, COPE is not adapted to our goal.

Cicchetti et al. propose in (Cicchetti et al., 2008)

a tool which is based on two transformations

execution. The first transformation consists in

transforming the metamodel as an input to a

difference metamodel. By using this difference

metamodel, the metamodel designer (who may be

the model designer as well) specifies a difference

model (containing all the changes between two

versions of the same metamodel). From this model,

the second transformation generates the

corresponding migration transformation. Cicchetti et

al. do not define a classification of the obtained

changes but reuse the classification of Grushko et al.

As for (Hermandosfer et al., 2008), this approach

only treats atomic changes while we focus on all

kind of changes (composites or atomics).

Furthermore, our tool uses a difference model

automatically obtained, while in (Cicchetti et al.,

2008) they need a manual specification of

differences. The metamodel designer should be able

to identify the differences between two metamodel

versions and then to specify them; but it is not

systematically the case.

Levendovszky et al. in (Levendovszky et al.,

2010) define a language called Model Change

Language (MCL). Using this language, the

metamodel designer (who is also the model

designer) manually defines the rules that map the

matching concepts between two metamodel

versions. The difference detection here corresponds

to the establishment of these mapping rules. The

migration tool uses an algorithm specified by the

designer as input. It interprets the rules set and

executes them. The approach doesn’t propose a

difference model or a classification step. This

approach is not adapted to our goal; we want to have

the most automated process to reduce as much as

possible the models designer intervention.

Grushko et al. (Grushko et al., 2007) focused on

the management of Ecore-based metamodel. Their

migration tool uses the ChangeRecorder facility in

the EMF tool set to detect atomic changes between

two versions of the metamodel. Their migration tool

then generates a model migration in the Epsilon

Transformation Language (ETL). But, the migration

model is only generated for renaming changes. For

other changes, the metamodel designer has to

manually specify the appropriate transformation.

We were interested in the classification proposed in

(Grushko et al., 2007) that classifies the changes

according to their impact on models (which is also

our goal). Its decomposition defines three categories:

Non-breaking change (“does not require any

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

212

adaptation of existing models”), Breaking and

resolvable changes (“an algorithm can be defined

to migrate existing instances to the new metamodel

version”) and Breaking and not resolvable

change (“manual interaction is required”). We

extended this classification to the domain of profile

evolution. However, there are a few points that we

will discuss in the next section.

The Table 1 synthetizes the previous approaches

to the four criteria initially described and we

complete it with our approach.

Table 1: Synthesis of the approaches and positioning.

3 CLASSIFICATION

3.1 Evolvable Elements of an UML
Profile

A UML profile consists in extending the UML

metamodel by specializing the UML concepts. Each

extended concept (represented by a Stereotype)

allows defining a new concept for a particular

domain. In addition to explaining each step of a

profile definition, (Selic, 2011) explains that an

extension of the UML language implies a semantic

proximity between the created stereotype and the

extended metaclass. It also states that the new

characteristics of a stereotype should not conflict

with those inherited from the extended metaclass.

Under these conditions, we start by determining the

profile elements that may evolve and may impact the

models. The Figure 1 describes the extract of the

UML metamodel which allows defining a profile.

The grey elements represent the elements that may

evolve. According to the UML standard, the

Stereotype element is "a restricted type of

metaclass". It can define properties, operations or

relationships with other elements of the profile.

These characteristics have not a fixed number or a

default value. It is precisely their evolutions that will

imply that the evolution of a stereotype will impact

models. Therefore, it is important to consider the

evolution of a Stereotype but also the evolution of its

characteristics.

The Extension element links the ends

(ExtensionEnd) of a metaclass and a stereotype. It is

used to assign to a stereotype the adequate UML

concept (UML metaclass). The stereotype inherits

the metaclass characteristics but also its

implementation. So, a stereotype evolution may be

inherits these characteristics.

The Profile element is a specialization of the

Package element. A profile evolves because its

contained elements evolve. Furthermore, these

contained elements use the profile name to create

their own qualified names. Thus, a renaming of the

profile can have side effects on the use of the profile

elements. A profile allows also the import of

external elements (ElementImport) or external

packages (PackageImport).

Figure 1: Extract of the UML metamodel, profile package.

3.2 Classification of Profile Evolutions

The classification of profile evolutions seems to be

the key step for a better management of their impact

on the models. Then, we determine the possible

evolutions of a UML profile. The study was

conducted on a profile containing 17 stereotypes, 17

generalization links, 37 properties, 2 operations, 5

SysML stereotypes specialized and 5 UML extended

metaclasses. We identified 84 possible evolutions

(composites or atomics) for these elements that we

classify into four possible categories (we don’t treat

the elements ElementImport and PackageImport):

CATEGORIE 1: Impact-free category. This

category corresponds to the evolutions which do not

impact models compliance. The models do not need

an adaptation to be compliant with the new version

of the profile (no migration operation is required).

Grushko and al. consider these evolutions as “Non-

breaking” because no migration is required. In our

approach, we consider that this evolution impacts

the representation quality of the models. The

addition of optional concepts is not insignificant for

P²E: A Tool for the Evolution Management of UML Profiles

213

model designer. They can improve the models

clarity or ensure a better satisfaction of system

requirements. For this evolution category, we sent to

the model designer improvement messages. They

identify the parts of models that can be improved.

CATEGORIE 2: Automatic evolution category.

To maintain the models compliance with the evolved

profile, a migration operation is required. But it can

be fully automated. For example, for the addition of

a new property, all the characteristics of this

property (multiplicity, type, initial value and

container) are defined during the profile evolution.

The migration operation will be fully automated but

a question remains: for each instance of this

property, do they have to be equal to the initial

value? Improvement messages are then sent to the

model designer in order to alert him to potential

improvements.

CATEGORIE 3: Monitored evolution category.

These are evolutions that require a migration

operation with the support of the designer. This type

of evolution is restrictive for the migration operation

because some information misses to complete the

operation. These blocking constraints can be

resolved by an interaction with the model designer.

Let’s take the example of the adding of a property

for which an initial value was not defined. What will

be the value of the property instantiated in a model?

CATEGORIE 4: Manual evolution category. This

category includes evolutions which required

migration can not be automated. They require a

manual migration by the model designer. In this

case, alert messages are sent to identify the elements

which need a manual operation.

4 PROCESS OF MODELS

ADAPTATION IN P²E

Our approach implemented in P²E is divided into

four main phases: the determination of the

differences between two profiles versions (1), their

classification according to the categories described

above (2), the adaptation consisting in automatically

generating the migration operation (3) and the

tracking of improvement messages for optimization

of the models description (we assist the model

designer in his improvement choices). The Figure 2

illustrates our adaptation process and the tasks of the

models designer during its execution. To illustrate

our approach, we consider an evolution of the

EAST-ADL2 language. The EAST-ADL2 standard

is used in automotive domain to design systems at a

high abstraction level. EAST-ADL2 is

representative of our approach. Indeed, they define

the metamodel of their abstract syntax as a UML

profile.

Figure 2: Adaptation process in P²E.

4.1 Step 1: Difference Model
Generation

Since 2010, the EAST-ADL2 standard evolved

towards three different versions. To detect the

evolutions between two profile versions, we have

chosen to reuse the EMFCompare technology

(EMFCompare, 2011). EMFCompare is an open

source tool dedicated to the EMF-based models

comparison. The lasts improvements allow

comparing two UML profiles or two EMF-based

metamodels. EMFCompare is based on a match

engine (that looks for corresponding concepts) and a

diff engine to determine differences. We estimate

that EMFCompare is sufficient to detect atomic

changes between two profile versions and so we

extended it mechanisms to obtain a profile

comparison adapted to our approach. Indeed,

currently, EMFCompare is not able to detect

composite changes which are not systematically an

atomic changes sum. So, we will add this feature to

EMFCompare. Furthermore, it doesn’t provide a

usable change model as output. To resolve this issue,

we define a structured difference metamodel and

then we extend EMFCompare to generate a usable

difference model that encompasses our difference

metamodel.
Between the version 2.0 and the version 2.1 of

EAST-ADL2, we established that: 580 elements

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

214

were added, 529 elements were deleted and 82

concepts were modified. A total of 1191 changes can

be detected. Due to a lack of place, let us consider

one of them. In the version 2.0 of EAST-ADL2

(Figure 3 (a)), the system functions are represented

by the ADLFunctionType concept. It may be

composite to describe the functions hierarchy and

own ADLFlowPort (i.e. Port concept) to

communicate with others functions. In the version

2.0, the ADLFlowPort concept is abstract which

means it can’t be instantiated. So, it is specialized

into three sub-stereotypes corresponding to the

possible direction of the port: ADLInFlowPort,

ADLOutFlowPort and ADLInOutFlowPort. In the

version 2.1 of the standard (Figure 3 (b)), the

ADLFlowPort concept evolves towards a more

compacted concept. Indeed, the tree sub-stereotypes

are removed and replaced by an enumeration

property (“direction:EADirectionKind”) in the

ADLFlowPort stereotype. The EADirectionKind
enumeration contains the literals corresponding to

the possible direction of a port (in, inout and out).

The Table 2 presents the difference model of the

evolution in a schematic way (simplified).

Figure 3: Port concept in EAST-ADL2 (version 2.0 (a)

and version 2.1 (b)).

Table 2: Difference model simplified.

4.2 Step 2: Classification of Detected
Changes

This step consists in reorganizing the difference

model according to the four categories we defined in

the section 3. The difference model (table 2) shows

that three evolution operations were made on our

example. The remove operation can be fully

automated, the modify operation can also be

automated. But, the addition operation can’t be

automated if all of their characteristics are not

defined: the initial value of the direction property is

missing. By this example, we notice that the

decomposition of one global evolution into

successive atomic operations can reduce the

automation of a migration operation. In our

approach, we propose to make researches on the

difference model, in order to detect patterns of

composite evolutions. We have thus defined a

catalogue of the most common profile evolutions in

the form of evolution patterns. For each pattern, we

associate a category. For this example, the

associated pattern is called “Removal of sub

stereotypes that become enumerated type”. Indeed,

the three merged operations become one composite

evolution to handle. The type of each port can be

associated (mapping) to a literal and can be

implicitly used as an initial value. So, it allows

adding automatically the direction property. The

management of composite patterns allows

automating a migration that wouldn’t be automated

if decomposed into atomic operations. More

generally, assigning a category to each detected

pattern will be made by filtering.

4.3 Steps 3 and 4: Operations of
Migration and Optimization

For Impact-free evolutions, recommendation

messages are generated for a treatment during the

step 4.

For Automatic and Monitored evolutions, we

automatically generate the transformation rule

specific to the detected evolution pattern. Indeed, we

studied each evolution pattern to give the

corresponding migration rule (to treat non atomic

patterns). It will consist then in instantiating the

adequate migration rule for each evolution pattern

contained in the catalogue take into account the

blocking constraints that require a designer

intervention. After the generation of the migration

rules, alert and recommendations messages are then

created.

One main objective of our approach being to

avoid the intervention of the models designer during

the adaptation process, we want to reduce Manual

evolutions to have as much as possible a posteriori

evolutions that belong to the first three categories. If

P²E: A Tool for the Evolution Management of UML Profiles

215

no solution is determined, the model elements that

can’t be migrated will be identified (generation of

warning messages).

To illustrate the migration operation required in

the evolution described above, we specified a model

using the ADLInFlowPort concept (Figure 4). The

Engine element represents the engine function of the

system. It owns a port accelerator stereotyped by

ADLInFlowPort representing the accelerator sensor.

The migration operation will consist in instantiating

the corresponding migration rule: 1/ the mapping of

the type of the sub stereotypes with the literals

(example: ADLInFlowPort = in). 2/ the replacement

of the stereotype ADLInFlowPort by the stereotype
FunctionFlowPort. 3/ the creation of the new

property direction. 4/ the information of the property

by the specific value (in). The Figure 5 illustrates

the result of the adaptation process executed on the

model in Figure 4.

For this example, we don’t consider the

renaming of the concepts and we don’t detail the

optimization step.

Figure 4: Model before the adaptation process.

Figure 5: Model after the adaptation process.

5 CONCLUSIONS AND FUTURE

WORKS

In this paper, we presented P²E tool (a Papyrus

plugin). The adaptation process implemented in P²E

was based on an automatic detection of evolution

patterns. To each detected pattern, a category is

assigned (according to the classification that we

propose) allowing then to adapt the models (by

using a migration operation) specifically to the

impact of the detected evolution. Then, P²E assists

(optimization step) the model designer in his choices

to improve models (by the tracking of improvement

messages).

P²E should be completed by the implementation

of the filtering method used for the detection of all

evolution patterns (composites). P²E should also be

able to define the correct order between the atomic

operations which compose a composite pattern.

Indeed, this order may differentially affect the level

of automation of the migration and may increase the

time of the migration operation. P²E should take into

account the relations of import or merge. These

relations imply that there exist two main impacts to

manage. The first one when an imported profile is

evolving, what are the evolution impacts on profile

that are imported? And the other one on the models

using the profile that make the import? (respectively

on a merging profile). For this, we will measure the

evolution impacts of these imports into a profile to

then offer a migration strategy for the adaptation of

the models as automatically as possible.

REFERENCES

Cicchetti, A., Ruscio, D. D., Eramo, R., Pierantonio, A.,

2008. Automating Co-evolution in Model-Driven

Engineering. In: IEEE Enterprise Distributed Object

Computing Conference, pp. 222–231.Washington.

EAST-ADL, 2010. Available from World Web: http://

www.atesst.org/home/liblocal/docs/.

EMF Compare, 2011: Available from World Web: http://

wiki.eclipse.org/ index.php/EMF_Compare.

Gruschko, B., Kolovos, D., Paige, R., 2007. Towards

Synchronizing Models with Evolving Metamodels. In:

Procs of the Work. MODSE.

Herrmannsdoerfer, M., Benz, S., Juergens E., 2008.

Automatability of Coupled Evolution of Metamodels

and Models in Practice. In: 11th international

conference on Model Driven Engineering Languages

and Systems, pp. 645–659, Berlin.

Kleppe, A. G., 2007. A Language Description is More

than a Metamodel. In: Workshop on Software

Language Engineering. Nashville, USA.

Levendovszky, T., Rumpe, B., Schätz, B., Sprinkle, J.,

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

216

2010. Model evolution and management. In: Model-

Based Engineering of Embedded Real-Time Systems,

pp. 241–270. Heidelberg.

Mens, T. Demeyer, S., 2008. Software Evolution.

Springer.

Papyrus, 2012. Available from World Web: www.papyru

suml.org.

Unified Modeling Language (UML), 2011. Available from

World Web: http://www.omg.org/spec/UML/2.3/.

Selic, B., 2007. A Systematic Approach to Domain-

Specific Language Design Using UML. In: Object-

Oriented Real-Time Distributed Computing, pp. 2-9.

P²E: A Tool for the Evolution Management of UML Profiles

217

http://www.omg.org/spec/UML/2.3/

