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Abstract: In this paper, we propose an interactive fuzzy decision making method for multiobjective fuzzy random linear
programming problems (MOFRLP), in which the criteria of probability maximization and fractile optimiza-
tion are considered simultaneously. In the proposed method, it is assumed that the decision maker has fuzzy
goals for not only objective functions of MOFRLP but also permissible probability levels in a fractile opti-
mization model for MOFRLP, and such fuzzy goals are quantified by eliciting the corresponding membership
functions. Using the fuzzy decision, such two kinds of membership functions are integrated. In the integrated
membership space, the satisfactory solution is obtained from among a Pareto optimal solution set through the
interaction with the decision maker.

1 INTRODUCTION

In the real world decision making situations, we of-
ten have to make a decision under uncertainty. In
order to deal with decision problems involving uncer-
tainty, stochastic programming approaches (Birge and
Louveaux, 1997; Charnes and Cooper, 1959; Dantzig,
1955; Kall and Mayer, 2005) and fuzzy programming
approaches (Lai and Hwang, 1992; Sakawa, 1993;
Zimmermann, 2011) have been developed. Recently,
mathematical programming problems with fuzzy ran-
dom variables (Kwakernaak, 1978) have been pro-
posed (Katagiri et al., 1997; Luhandjula and Gupta,
1996; Wang and Qiao, 1993) whose concept includes
both probabilistic uncertainty and fuzzy ones simul-
taneously. For multiobjective fuzzy random linear
programming problems (MOFRLP), (Sakawa et al.,
2011) formulated and proposed interactive methods
to obtain the satisfactory solution. In their methods, it
is required in advance for the decision maker to spec-
ify permissible possibility levels in a probability max-
imization model or permissible probability levels in a
fractile optimization model. However, it seems to be
very difficult for the decision maker to specify such
permissible levels appropriately. From such a point of
view, (Yano and Matsui, 2011) have proposed a fuzzy
approach for MOFRLP, in which the decision maker

specifies the membership functions for the fuzzy
goals of both objective functions of MOFRLP and
permissible probability levels. In the proposed
method, it is assumed that the decision maker adopts
the fuzzy decision (Sakawa, 1993) to integrate the
membership functions. However, the fuzzy decision
can be viewed as one special operator to integrate the
membership functions. If the decision maker would
not adopt the fuzzy decision, the proposed method
cannot be applied in the real-world decision situation.
In this paper, we propose an interactive fuzzy decision
making method for MOFRLP to obtain the satisfac-
tory solution from among a Pareto optimal solution
set. In section 2, MOFRLP is formulated by using a
concept of a possibility measure (Dubois and Prade,
1980). In section 3, through a probability maximiza-
tion model, theDp-Pareto optimal concept is intro-
duced in order to deal with MOFRLP, and the minmax
problem is formulated to obtain aDp-Pareto optimal
solution, which can be solved on the basis of the linear
programming technique. In section 4, through a frac-
tile optimization model, theDG-Pareto optimal con-
cept is introduced and the minmax problem is formu-
lated to obtain aDG-Pareto optimal solution. In sec-
tion 5, we propose an interactive algorithm to obtain
the satisfactory solution from among a Pareto optimal
solution set by solving the minmax problem on the ba-
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sis of the linear programming technique. In section 5,
in order to demonstrate the interactive processes un-
der the hypothetical decision maker, a two-objective
fuzzy random linear programming problem, as a nu-
merical example, is formulated and solved by using
the proposed interactive algorithm. Finally, in section
7, we conclude this paper.

2 MULTIOBJECTIVE FUZZY
RANDOM LINEAR
PROGRAMMING PROBLEMS

In this section, we focus on multiobjective program-
ming problems involving fuzzy random variable coef-
ficients in objective functions, which is called multi-
objective fuzzy random linear programming problem
(MOFRLP).
[MOFRLP]

minC̃x= (̃c1x, · · · , c̃kx)

subject to

x∈ X
def
= {x∈ Rn | Ax≤ b,x≥ 0}

wherex = (x1,x2, · · · ,xn)
T is ann dimensional deci-

sion variable column vector,A is an (m× n) coeffi-
cient matrix,b = (b1, · · · ,bm)

T is anm dimensional
column vector. c̃i = (̃ci1, · · · , c̃in), i = 1, · · · ,k, are
coefficient vectors of objective functioñcix, whose
elements are fuzzy random variables (Kwakernaak,
1978; Puri and Ralescu, 1986; Sakawa et al., 2011),
and the symbols"-" and"˜" mean randomness and
fuzziness respectively.

In order to deal with the objective functions
c̃ix, i = 1, · · · ,k, (Sakawa et al., 2011) proposed an
LR-type fuzzy random variable which can be re-
garded as a special version of a fuzzy random vari-
able. Under the occurrence of each elementary event
ω, c̃i j (ω) is a realization of an LR-type fuzzy random
variable c̃i j , which is an LR fuzzy number (Dubois
and Prade, 1980) whose membership function is de-
fined as follows.

µ̃ci j (ω)(s) =





L
(

d̄i j (ω)−s
ᾱi j (ω)

)
(s≤ d̄i j (ω) ∀ω),

R
(

s−d̄i j (ω)
β̄i j (ω)

)
(s> d̄i j (ω) ∀ω),

where the functionL(t)
def
= max{0, l(t)} is a real-

valued continuous function from[0,∞) to [0,1], and
l(t) is a strictly decreasing continuous function sat-

isfying l(0) = 1. Also, R(t)
def
= max{0, r(t)} satisfies

the same conditions.̄di j , ᾱi j , β̄i j are random variables
expressed byd̄i j = d1

i j + t̄id2
i j , ᾱi j = α1

i j + t̄iα2
i j and

β̄i j = β1
i j + t̄iβ2

i j . t̄i is a random variable whose dis-
tribution function is denoted byTi(·) which is strictly
increasing and continuous, andd1

i j ,d
2
i j , α1

i j ,α2
i j ,β1

i j ,β2
i j

are constants.
(Sakawa et al., 2011) transformed MOFRLP into

a multiobjective stochastic programming problem
(MOSP) by using a concept of a possibility measure
(Dubois and Prade, 1980). As shown in (Sakawa
et al., 2011), the realizations̃ci(ω)x becomes an LR
fuzzy number characterized by the following mem-
bership functions on the basis of the extension princi-
ple (Dubois and Prade, 1980).

µc̃i(ω)x
(y) =






L

(
d̄i(ω)x−y
ᾱi(ω)x

)
y≤ d̄i(ω)x

R

(
y−d̄i(ω)x
β̄i(ω)x

)
y> d̄i(ω)x

For the realizations̃ci(ω)x,i = 1, · · · ,k, it is assumed
that the decision maker has fuzzy goalsG̃i ,i = 1, · · · ,k
(Sakawa, 1993), whose membership functionsµG̃i

(y),
i = 1, · · · ,k are continuous and strictly decreasing for
minimization problems. By using a concept of a pos-
sibility measure (Dubois and Prade, 1980), a degree
of possibility that the objective function valuẽcix sat-
isfies the fuzzy goal̃Gi is expressed as follows (Kata-
giri et al., 1997).

Πc̃ix
(G̃i)

def
= supy min{µc̃ix

(y),µG̃i
(y)} (1)

Using a possibility measure, MOFRLP can be trans-
formed into the following multiobjective stochastic
programming problem (MOSP).
[MOSP]

max
x∈X

(Πc̃1x
(G̃1), · · · ,Πc̃kx

(G̃k)) (2)

(Sakawa et al., 2011) transformed MOSP into the
usual multiobjective programming problems through
a probability maximization model and a fractile max-
imization model, and proposed interactive algorithms
to obtain a satisfactory solution. In their methods, the
decision maker must specify permissible probability
levels or permissible possibility levels for the objec-
tive functions in advance. However, it seems to be
very difficult to specify appropriate permissible lev-
els because they have a great influence on the objec-
tive function values or distribution function values.
In the following sections, by assuming that the deci-
sion maker has fuzzy goals for permissible probabil-
ity levels and permissible possibility levels, we pro-
pose an interactive fuzzy decision making method for
MOFRLP to obtain a satisfactory solution.
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3 A FORMULATION THROUGH
A PROBABILITY
MAXIMIZATION MODEL

For the objective function of MOSP, if the decision
maker specifies the permissible possibility levelhi ∈
[0,1], then MOSP can be formulated as the following
multiobjective programming problem through a prob-
ability maximization model.
[MOP1(h)]

max
x∈X

(Pr(ω | Πc̃1(ω)x
(G̃1)≥ h1), · · · ,

Pr(ω | Πc̃k(ω)x
(G̃k)≥ hk))

where Pr(·) is a probability measure,h= (h1, · · · ,hk)
is a vector of permissible possibility levels. In
MOP1(h), the inequalityΠc̃i(ω)x

(G̃i) ≥ hi can be

equivalently transformed into the following form.

supy min{µc̃ix
(y),µG̃i

(y)} ≥ hi ,

⇔ (d̄i(ω)−L−1(hi)ᾱi(ω))x≤ µ−1
G̃i
(hi)

where L−1(·) and R−1(·) are pseudo-inverse func-
tions. Therefore, using the distribution functionTi(·)
of the random variablēti , the objective functions in
MOP1(h) can be expressed as the following form.

Pr(ω | Πc̃i(ω)x
(G̃i)≥ hi)

= Ti

(
µ−1

G̃i
(hi)− (d1

i x−L−1(hi)α1
i x)

d2
i x−L−1(hi)α2

i x

)

def
= pi(x,hi) (3)

where it is assumed that(d2
i − L−1(0)α2

i )x > 0, i =
1, · · · ,k for anyx∈ X. As a result, usingpi(x,hi), i =
1, · · · ,k, MOP1(h) can be transformed to the follow-
ing simple form (Sakawa et al., 2011).
[MOP2(h)]

max
x∈X

(p1(x,h1), · · · , pk(x,hk))

In MOP2(h), the decision maker seems to prefer not
only the larger value of a permissible possibility level
hi but also the larger value of the corresponding dis-
tribution functionpi(x,hi). Since these values conflict
with each other, the larger value of a permissible pos-
sibility level hi results in the less value of the corre-
sponding distribution functionpi(x,hi). From such a
point of view, we consider the following multiobjec-
tive programming problem which can be regarded as
a natural extension of MOP2(h).
[MOP3]

max
x∈X,hi∈[0,1],i=1,··· ,k

(p1(x,h1), · · · , pk(x,hk),

h1, · · · ,hk)

It should be noted in MOP3 that permissible possi-
bility levels hi, i = 1, · · · ,k are not the fixed values
but the decision variables. Considering the imprecise
nature of the decision maker’s judgment, it is natu-
ral to assume that the decision maker has fuzzy goals
for pi(x,hi), i = 1, · · · ,k. In this section, we assume
that such fuzzy goals can be quantified by eliciting
the corresponding membership functions. Let us de-
note a membership function of a distribution function
asµpi (pi(x,hi)). Then, MOP3 can be transformed to
the following multiobjective programming problem.
[MOP4]

max
x∈X,hi∈[0,1],i=1,··· ,k

(µp1(p1(x,h1)), · · · ,

µpk(pk(x,hk)),h1, · · · ,hk)

In order to elicit the membership functions
µpi (pi(x,hi)), i = 1, · · · ,k appropriately, we suggest
the following procedures. First of all, the decision
maker sets the intervalsHi = [himin,himax] for per-
missible possibility levels, wherehimin is a maximum
value of an unacceptable levels andhimax is a mini-
mum value of a sufficiently satisfactory levels. For
the intervalHi , the corresponding interval ofpi(x, ĥi)
can be defined asPi(Hi) = [pimin, pimax] = {pi(x,hi) |
x∈ X,hi ∈ Hi}. pimax can be obtained by solving the
following optimization problem.

pimax
def
= max

x∈X
pi(x,himin) (4)

In order to obtainpimin, we first solve the optimization
problems maxx∈X pi(x,himax), i = 1, · · · ,k, and denote
the corresponding optimal solutions asxi , i = 1, · · · ,k.
Using the optimal solutionxi , i = 1, · · · ,k, pimin can
be obtained as the following minimum value.

pimin
def
= min

ℓ=1,··· ,k,ℓ 6=i
pi(xℓ,himax) (5)

For the membership functionsµpi (pi(x,hi)), i =
1, · · · ,k defined onPi(Hi), we make the following as-
sumption.
Assumption 1.
µpi (pi(x,hi)), i = 1, · · · ,k are strictly increasing and
continuous with respect topi(x,hi) ∈ Pi(Hi), and
µpi (pimin) = 0, µpi (pimax) = 1.

It should be noted here thatµpi (pi(x,hi)) is strictly
decreasing with respect tohi ∈ Hi . If the decision
maker adopts the fuzzy decision (Sakawa, 1993) to
integrateµpi (pi(x,hi)) and hi , MOP4 can be trans-
formed into the following form.
[MOP5]

max
x∈X,hi=Hi ,i=1,··· ,k

(
µDp1

(x,h1), · · · ,µDpk
(x,hk)

)

where

µDpi
(x,hi)

def
= min{hi ,µpi (pi(x,hi))} (6)
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In order to deal with MOP5, we introduce aDp-Pareto
optimal solution concept.
Definition 1.
x∗ ∈ X,h∗i ∈ Hi , i = 1, · · · ,k is said to be aDp-Pareto
optimal solution to MOP5, if and only if there does
not exist anotherx∈ X,hi ∈ Hi , i = 1, · · · ,k such that
µDpi

(x,hi) ≥ µDpi
(x∗,h∗i ) i = 1, · · · ,k with strict in-

equality holding for at least onei.
For generating a candidate of a satisfactory so-

lution which is alsoDp-Pareto optimal, the decision
maker is asked to specify the reference membership
values (Sakawa, 1993) in membership space. Once
the reference membership values ˆµ= (µ̂1, · · · , µ̂k) are
specified, the correspondingDp-Pareto optimal so-
lution is obtained by solving the following minmax
problem.
[MINMAX1( µ̂)]

min
x∈X,hi∈Hi ,i=1,··· ,k,λ∈Λ

λ (7)

subject to

µ̂i −µpi(pi(x,hi)) ≤ λ, i = 1, · · · ,k (8)

µ̂i −hi ≤ λ, i = 1, · · · ,k (9)

where
Λ = [ max

i=1,··· ,k
µ̂i −1, min

i=1,···,k
µ̂i ]. (10)

From Assumption 1, the inequality constraints (8) can
be transformed into the following form.

µ̂i −µpi(pi(x,hi))≤ λ
⇔ µ−1

G̃i
(hi)≥ (d1

i x+T−1
i (µ−1

pi
(µ̂i −λ))d2

i x)

−L−1(hi)(α1
i x+T−1

i (µ−1
pi
(µ̂i −λ))α2

i x)

(11)

In (11), because of ˆµi − λ ≤ hi and Assumption 1,
it holds thatµ−1

G̃i
(hi) ≤ µ−1

G̃i
(µ̂i − λ) and L−1(hi) ≤

L−1(µ̂i − λ). Since it is guaranteed that(α1
i x +

T−1
i (µ−1

pi
(µ̂i −λ)) α2

i x)> 0, the following inequalities
can be derived.

(d1
i x+T−1

i (µ−1
pi
(µ̂i −λ))d2

i x)

−L−1(hi)(α1
i x+T−1

i (µ−1
pi
(µ̂i −λ))α2

i x)

≥ (d1
i x+T−1

i (µ−1
pi
(µ̂i −λ))d2

i x)

−L−1(µ̂i −λ)(α1
i x+T−1

i (µ−1
pi
(µ̂i −λ))α2

i x)

= (d1
i x−L−1(µ̂i −λ)α1

i x)

+T−1
i (µ−1

pi
(µ̂i −λ)) · (d2

i x−L−1(µ̂i −λ)α2
i x)

(12)

From (11) and (12), it holds that

µ−1
G̃i
(µ̂i −λ)≥ µ−1

G̃i
(hi)

≥ (d1
i x−L−1(µ̂i −λ)α1

i x)

+T−1
i (µ−1

pi
(µ̂i −λ)) · (d2

i x−L−1(µ̂i −λ)α2
i x).

Therefore, MINMAX1(µ̂) can be reduced to the
following minmax problem.
[MINMAX2( µ̂)]

min
x∈X,λ∈Λ

λ (13)

subject to

µ−1
G̃i
(µ̂i −λ)≥ (d1

i x−L−1(µ̂i −λ)α1
i x)

+T−1
i (µ−1

pi
(µ̂i −λ)) · (d2

i x−L−1(µ̂i −λ)α2
i x),

i = 1, · · · ,k (14)

It should be noted here that the constraints (14) can be
reduced to a set of linear inequalities for some fixed
value λ ∈ Λ. This means that an optimal solution
(x∗,λ∗) of MINMAX2( µ̂) is obtained by combined
use of the bisection method with respect toλ ∈ Λ and
the first-phase of the two-phase simplex method of
linear programming. The relationships between the
optimal solution(x∗,λ∗) of MINMAX2( µ̂) and Dp-
Pareto optimal solutions can be characterized by the
following theorem.
Theorem 1.
(1) If x∗ ∈ X,λ∗ ∈ Λ is a unique optimal solution of
MINMAX2( µ̂), thenx∗ ∈ X, µ̂i −λ∗ ∈ Hi , i = 1, · · · ,k
is aDp-Pareto optimal solution.
(2) If x∗ ∈ X,h∗i ∈ Hi , i = 1, · · · ,k is a Dp-Pareto
optimal solution, thenx∗ ∈ X, λ∗ = µ̂i − h∗i = µ̂i −
µpi (pi(x∗,h∗i )), i = 1, · · · ,k is an optimal solution of
MINMAX2( µ̂) for some reference membership val-
uesµ̂= (µ̂1, · · · , µ̂k).
(Proof)
(1) From (14), it holds that ˆµi −λ∗ ≤ µpi (pi(x∗, µ̂i −
λ∗)), i = 1, · · · ,k.Assume thatx∗ ∈X, µ̂i−λ∗ ∈Hi , i =
1, · · · ,k is not aDp-Pareto optimal solution. Then,
there existx∈ X,hi ∈ Hi , i = 1, · · · ,k such that

µDpi
(x,hi) = min{hi,µpi (pi(x,hi))}

≥ µDpi
(x∗, µ̂i −λ∗)

= µ̂i −λ∗, i = 1, · · · ,k,

with strict inequality holding for at least onei. Then
it holds that

hi ≥ µ̂i −λ∗, i = 1, · · · ,k (15)

µpi (pi(x,hi)) ≥ µ̂i −λ∗, i = 1, · · · ,k (16)

From Assumption 1, (3) andL−1(hi)≤ L−1(µ̂i −λ∗),
(15) and (16) can be transformed as follows.

µ−1
G̃i
(hi) ≤ µ−1

G̃i
(µ̂i −λ∗), i = 1, · · · ,k

µ−1
G̃i
(hi) ≥ (d1

i x−L−1(µ̂i −λ∗)α1
i x)

+T−1
i (µ−1

pi
(µ̂i −λ∗))

·(d2
i x−L−1(µ̂i −λ∗)α2

i x),

i = 1, · · · ,k
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As a result, there existsx∈ X such that

µ−1
G̃i
(µ̂i −λ∗)− (d1

i x−L−1(µ̂i −λ∗)α1
i x)

≥ T−1
i (µ−1

pi
(µ̂i −λ∗)) · (d2

i x−L−1(µ̂i −λ∗)α2
i x),

i = 1, · · · ,k,

which contradicts the fact thatx∗ ∈ X,λ∗ ∈ Λ is a
unique optimal solution to MINMAX2(ˆµ).
(2) Assume thatx∗ ∈X,λ∗ ∈ Λ is not an optimal solu-
tion to MINMAX2( µ̂) for any reference membership
valuesµ̂= (µ̂1, · · · , µ̂k), which satisfy the equalities

µ̂i −λ∗ = h∗i = µpi (pi(x
∗,h∗i )), i = 1, · · · ,k. (17)

Then, there exists somex∈ X,λ < λ∗ such that

µ−1
G̃i
(µ̂i −λ)− (d1

i x−L−1(µ̂i −λ)α1
i x)

≥ T−1
i (µ−1

pi
(µ̂i −λ)) · (d2

i x−L−1(µ̂i −λ)α2
i x),

⇔ µpi (pi(x, µ̂i −λ))≥ µ̂i −λ, i = 1, · · · ,k (18)

Because of (17),(18) and ˆµi −λ> µ̂i −λ∗, i = 1, · · · ,k,
the following inequalities hold.

µpi (pi(x,hi)) > µpi (pi(x
∗,h∗i )), i = 1, · · · ,k

wherehi = µ̂i − λ ∈ Hi . Then, because ofhi > h∗i ,
there existsx∈ X,hi ∈ Hi , i = 1, · · · ,k such that

µDpi
(x,hi)> µDpi

(x∗,h∗i ), i = 1, · · · ,k.

This contradicts the fact thatx∗ ∈ X,h∗i ∈ Hi , i =
1, · · · ,k is aDp-Pareto optimal solution.

4 A FORMULATION THROUGH
A FRACTILE OPTIMIZATION
MODEL

If we adopt a fractile optimization model for the ob-
jective functions of MOSP, we can convert MOSP to
the following multiobjective programming problem,
where the decision maker specifies permissible prob-
ability levelsp̂i , i = 1, · · · ,k in his/her subjective man-
ner (Sakawa et al., 2011).
[MOP6(p̂)]

max
x∈X,hi∈[0,1],i=1,··· ,k

(h1, · · · ,hk) (19)

subject to
pi(x,hi)≥ p̂i , i = 1, · · · ,k (20)

where p̂ = (p̂1, · · · , p̂k) is a vector of permissible
probability levels. Since a distribution functionTi(·)
is continuous and strictly increasing, the constraints
(20) can be transformed to the following form.

p̂i ≤ pi(x,hi)

⇔ µ−1
G̃i
(hi)≥ (d1

i x−L−1(hi)α1
i x)

+T−1
i (p̂i) · (d

2
i x−L−1(hi)α2

i x) (21)

Let us define the right-hand side of the inequality (21)
as follows.

fi(x,hi , p̂i)
def
= (d1

i x−L−1(hi)α1
i x)

+T−1
i (p̂i) · (d

2
i x−L−1(hi)α2

i x)

(22)

Then, MOP6(p̂) can be equivalently transformed into
the following form.
[MOP7(p̂)]

max
x∈X,hi∈[0,1],i=1,··· ,k

(h1, · · · ,hk) (23)

subject to
µG̃i

( fi(x,hi , p̂i))≥ hi , i = 1, · · · ,k (24)

In MOP7(p̂), let us pay attention to the inequal-
ities (24). fi(x,hi , p̂i) is continuous and strictly in-
creasing with respect tohi for any x ∈ X. This
means that the left-hand-side of (24) is continuous
and strictly decreasing with respect tohi for anyx ∈
X. Since the right-hand-side of (24) is continuous and
strictly increasing with respect tohi , the inequalities
(24) must always satisfy the active condition, that is,
µG̃i

( fi(x,hi , p̂i)) = hi , i = 1, · · · ,k at the optimal solu-
tion. From such a point of view, MOP7(p̂) is equiva-
lently expressed as the following form.
[MOP8(p̂)]

max
x∈X,hi∈[0,1],i=1,···,k

(µG̃1
( f1(x,h1, p̂1)), · · · ,

µG̃k
( fk(x,hk, p̂k))) (25)

subject to
µG̃i

( fi(x,hi , p̂i)) = hi , i = 1, · · · ,k (26)

In order to deal with MOP8(p̂), the decision
maker must specify permissible probability levels ˆp
in advance. However, in general, the decision maker
seems to prefer not only the larger value of a permis-
sible probability level but also the larger value of the
corresponding membership functionsµG̃i

(·). From
such a point of view, we consider the following mul-
tiobjective programming problem which can be re-
garded as a natural extension of MOP8(p̂).
[MOP9]

max
x∈X,hi∈[0,1],p̂i∈(0,1),i=1,···,k

(µG̃1
( f1(x,h1, p̂1)),

· · · ,µG̃k
( fk(x,hk, p̂k)), p̂1, · · · , p̂k)

subject to
µG̃i

( fi(x,hi , p̂i)) = hi , i = 1, · · · ,k (27)

It should be noted in MOP9 that permissible proba-
bility levels are not the fixed values but the decision
variables.

Considering the imprecise nature of the decision
maker’s judgment, we assume that the decision maker
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has a fuzzy goal for each permissible probability
level. Such a fuzzy goal can be quantified by elic-
iting the corresponding membership function. Let us
denote a membership function of a permissible prob-
ability level p̂i asµp̂i (p̂i). Then, MOP9 can be trans-
formed as the following multiobjective programming
problem.
[MOP10]

max
x∈X,hi∈[0,1],p̂i∈(0,1),i=1,···,k

(µG̃1
( f1(x,h1, p̂1)),

· · · ,µG̃k
( fk(x,hk, p̂k)),µp̂1(p̂1), · · · ,µp̂k(p̂k))

subject to
µG̃i

( fi(x,hi, p̂i)) = hi , i = 1, · · · ,k (28)

In order to elicit the membership functions appro-
priately, we suggest the following procedures. First
of all, the decision maker sets the intervalsPi =
[pimin, pimax], i = 1, · · · ,k, wherepimin is an unaccept-
able maximum value of ˆpi andpimax is a sufficiently
satisfactory minimum value of ˆpi . Throughout this
section, we make the following assumption.
Assumption 2.
µp̂i (p̂i), i = 1, · · · ,k are strictly increasing and con-
tinuous with respect to ˆpi ∈ Pi, andµp̂i (pimin) = 0,
µp̂i (pimax) = 1.

Corresponding to the intervalPi , the interval ofhi ,
which is defined asHi(Pi) = [himin,himax], can be ob-
tained as follows. The maximum valuehimax can be
obtained by solving the following problem.

min
x∈X,hi∈[0,1]

fi(x,hi , pimin) (29)

subject tohi = µG̃i
( fi(x,hi , pimin)) (30)

This is equivalent to the following problem.

himax
def
= max

x∈X,hi∈[0,1]
hi (31)

subject to

µ−1
G̃i
(hi) = (d1

i x−L−1(hi)α1
i x)

+T−1
i (pimin) · (d

2
i x−L−1(hi)α2

i x)

(32)

The optimal solutionx∗,h∗i , i = 1, · · · ,k of the above
problem can be obtained by combined use of the bi-
section method with respect tohi ∈ [0,1] and the first-
phase of the two-phase simplex method of linear pro-
gramming. In order to obtainhimin, we first solve the
following k linear programming problems.

min
x∈X,hi∈[0,1]

fi(x,hi , pimax) (33)

subject tohi = µG̃i
( fi(x,hi , pimax)) (34)

Let (x∗i ,h
∗
i ), i = 1, · · · ,k be the above optimal solution.

Using the optimal solutions(x∗i ,h
∗
i ), i = 1, · · · ,k, himin

can be obtained as follows.

himin
def
= min

ℓ=1,··· ,k,ℓ 6=i
µG̃i

( fi(x
∗
ℓ ,h

∗
ℓ , pimax)) (35)

It should be noted here that,µG̃i
( fi(x,hi , p̂i)) is

strictly decreasing with respect to ˆpi . If the decision
maker adopts the fuzzy decision (Sakawa, 1993) to
integrateµG̃i

( fi(x,hi , p̂i)) andµp̂i (p̂i), MOP10 can be
transformed into the following form.
[MOP11]

max
x∈X,p̂i∈Pi ,hi∈Hi (Pi),i=1,··· ,k
(

µDG1
(x,h1, p̂1), · · · ,µDGk

(x,hk, p̂k)
)

(36)

subject to

µG̃i
( fi(x,hi , p̂i)) = hi , i = 1, · · · ,k (37)

where

µDGi
(x,hi , p̂i)

def
= min{µp̂i (p̂i),µG̃i

( fi(x,hi , p̂i))}

(38)

In order to deal with MOP11, we introduce aDG-
Pareto optimal solution concept.
Definition 2.
x∗ ∈ X, p̂∗i ∈ Pi,h∗i ∈ Hi(Pi), i = 1, · · · ,k is said to
be aDG-Pareto optimal solution to MOP11, if and
only if there does not exist anotherx ∈ X, p̂i ∈
Pi ,hi ∈ Hi(Pi), i = 1, · · · ,k such thatµDGi

(x,hi , p̂i) ≥

µDGi
(x∗,h∗i , p̂

∗
i ),i = 1, · · · ,k with strict inequality

holding for at least onei, whereµG̃i
( fi(x∗,h∗i , p̂

∗
i )) =

h∗i , µG̃i
( fi(x,hi , p̂i)) = hi , i = 1, · · · ,k.

For generating a candidate of a satisfactory solu-
tion which is alsoDG-Pareto optimal, the decision
maker is asked to specify the reference membership
values (Sakawa, 1993). Once the reference member-
ship values ˆµ = (µ̂1, · · · , µ̂k) are specified, the corre-
spondingDG-Pareto optimal solution is obtained by
solving the following minmax problem.
[MINMAX3( µ̂)]

min
x∈X,p̂i∈Pi ,hi∈Hi(Pi),i=1,··· ,k,λ∈Λ

λ (39)

subject to

µ̂i −µp̂i(p̂i) ≤ λ, i = 1, · · · ,k, (40)

µ̂i −hi ≤ λ, i = 1, · · · ,k, (41)

µG̃i
( fi(x,hi , p̂i)) = hi , i = 1, · · · ,k. (42)

where
Λ = [ max

i=1,··· ,k
µ̂i −1, min

i=1,··· ,k
µ̂i ]. (43)
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In the constraints (41) and (42), it holds that

hi = µG̃i
( fi(x,hi , p̂i))≥ µ̂i −λ,

⇔ µ−1
G̃i
(hi) = fi(x,hi , p̂i)≤ µ−1

G̃i
(µ̂i −λ)

⇔ µ−1
G̃i
(hi) = (d1

i x−L−1(hi)α1
i x)

+T−1
i (p̂i) · (d

2
i x−L−1(hi)α2

i x)

≤ µ−1
G̃i
(µ̂i −λ). (44)

In the right hand side of (44), because ofL−1(hi) ≤

L−1(µ̂i −λ) andα1
i x+T−1

i (p̂i)α2
i x> 0, it holds that

(d1
i x−L−1(hi)α1

i x)

+T−1
i (p̂i) · (d

2
i x−L−1(hi)α2

i x)

≥ (d1
i x+T−1

i (p̂i)d
2
i x)

−L−1(µ̂i −λ)
(
α1

i x+T−1
i (p̂i)α2

i x
)
. (45)

Using (44) and (45), it holds that

µ−1
G̃i
(µ̂i −λ)

≥ (d1
i x+T−1

i (p̂i)d
2
i x)

−L−1(µ̂i −λ)
(
α1

i x+T−1
i (p̂i)α2

i x
)

= (d1
i x−L−1(µ̂i −λ)α1

i x)

+T−1
i (p̂i) · (d

2
i x−L−1(µ̂i −λ)α2

i x). (46)

Moreover, because of ˆpi ≥ µ−1
p̂i
(µ̂i − λ), (46) can be

transformed into the following form.

Ti

(
µ−1

G̃i
(µ̂i −λ)− (d1

i x−L−1(µ̂i −λ)α1
i x)

d2
i x−L−1(µ̂i −λ)α2

i x

)

≥ p̂i ≥ µ−1
p̂i
(µ̂i −λ),

⇔ µ−1
G̃i
(µ̂i −λ)≥ (d1

i x−L−1(µ̂i −λ)α1
i x)

+T−1
i (µ−1

p̂i
(µ̂i −λ)) · (d2

i x−L−1(µ̂i −λ)α2
i x)

(47)

Therefore, MINMAX3(µ̂) can be reduced to the fol-
lowing minmax problem.
[MINMAX4( µ̂)]

min
x∈X,λ∈Λ

λ (48)

subject to

µ−1
G̃i
(µ̂i −λ)≥ (d1

i x−L−1(µ̂i −λ)α1
i x)

+T−1
i (µ−1

p̂i
(µ̂i −λ)) · (d2

i x−L−1(µ̂i −λ)α2
i x),

i = 1, · · · ,k (49)

It should be noted here that MINMAX4(ˆµ) is equiva-
lent to MINMAX2(µ̂). The relationships between the
optimal solution(x∗,λ∗) of MINMAX4( µ̂) andDG-
Pareto optimal solutions can be characterized by the
following theorem.

Theorem 2.
(1) If x∗ ∈ X,λ∗ ∈ Λ is a unique optimal solution
of MINMAX4( µ̂), thenx∗ ∈ X, p̂∗i = µ−1

p̂i
(µ̂i − λ∗) ∈

Pi ,h∗i = µ̂i − λ∗ ∈ Hi(Pi), i = 1, · · · ,k is a DG-Pareto
optimal solution.
(2) If x∗ ∈ X, p̂∗i ∈ Pi ,h∗i ∈ Hi(Pi), i = 1, · · · ,k is a
DG-Pareto optimal solution, thenx∗ ∈ X, λ∗ = µ̂i −
µp̂i (p̂

∗
i ) = µ̂i −µG̃i

( fi(x∗,h∗i , p̂
∗
i )), i = 1, · · · ,k is an op-

timal solution of MINMAX4(µ̂) for some reference
membership values ˆµ= (µ̂1, · · · , µ̂k).
(Proof)
(1) From (49), it holds that

µ̂i −λ∗ ≤ µG̃i
( fi(x

∗, µ̂i −λ∗,µ−1
p̂i
(µ̂i −λ∗))),

and it is obvious that ˆµi − λ∗ = µp̂i (µ
−1
p̂i
(µ̂i − λ∗)).

Assume thatx∗ ∈ X, µ̂i −λ∗ ∈ Hi(Pi),µ
−1
p̂i
(µ̂i −λ∗) ∈

Pi , i = 1, · · · ,k is not aDG-Pareto optimal solution.
Then, there existx∈X, p̂i ∈Pi ,hi ∈Hi(Pi), i = 1, · · · ,k
such that

µDGi
(x,hi , p̂i) = min{µp̂i (p̂i),µG̃i

( fi(x,hi , p̂i))}

≥ µDGi
(x∗, µ̂i −λ∗,µ−1

p̂i
(µ̂i −λ∗))

= µ̂i −λ∗, i = 1, · · · ,k,

with strict inequality holding for at least onei, and
µG̃i

( fi(x,hi , p̂i)) = hi , i = 1, · · · ,k. Then it holds that

µp̂i (p̂i) ≥ µ̂i −λ∗, i = 1, · · · ,k, (50)

µG̃i
( fi(x,hi , p̂i)) ≥ µ̂i −λ∗, i = 1, · · · ,k. (51)

From Assumption 2 and (22), (50) and (51) can be
transformed as follows.

p̂i ≥ µ−1
p̂i
(µ̂i −λ∗), i = 1, · · · ,k

p̂i ≤ Ti

(
µ−1

G̃i
(µ̂i −λ∗)− (d1

i x−L−1(hi)α1
i x)

d2
i x−L−1(hi)α2

i x

)
,

i = 1, · · · ,k

Because ofL−1(hi)≤ L−1(µ̂i −λ∗), i = 1, · · · ,k, there
existsx∈ X such that

µ−1
G̃i

(µ̂i −λ∗)− (d1
i x−L−1(hi)α1

i x)

≥ T−1
i (µ−1

p̂i
(µ̂i −λ∗)) · (d2

i x−L−1(hi)α2
i x),

⇔ µ−1
G̃i

(µ̂i −λ∗)≥

(d1
i x+T−1

i (µ−1
p̂i
(µ̂i −λ∗)) ·d2

i x)

−L−1(hi)(α1
i x+T−1

i (µ−1
p̂i

(µ̂i −λ∗)) ·α2
i x),

⇔ µ−1
G̃i

(µ̂i −λ∗)≥ (d1
i x+T−1

i (µ−1
p̂i

(µ̂i −λ∗)) ·d2
i x)

−L−1(µ̂i −λ∗)(α1
i x+T−1

i (µ−1
p̂i

(µ̂i −λ∗)) ·α2
i x)

i = 1, · · · ,k.
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This contradicts the fact thatx∗ ∈ X,λ∗ ∈ Λ is a
unique optimal solution to MINMAX4(ˆµ).
(2) Assume thatx∗ ∈X,λ∗ ∈ Λ is not an optimal solu-
tion to MINMAX4( µ̂) for any reference membership
valuesµ̂= (µ̂1, · · · , µ̂k) which satisfy the equalities

µ̂i −λ∗ = µp̂i (p̂
∗
i ) = µG̃i

( fi(x
∗,h∗i , p̂

∗
i )),

i = 1, · · · ,k. (52)

Then, there exists somex∈ X,λ < λ∗ such that

µ−1
G̃i
(µ̂i −λ)− (d1

i x−L−1(µ̂i −λ)α1
i x)

≥ T−1
i (µ−1

p̂i
(µ̂i −λ)) · (d2

i x−L−1(µ̂i −λ)α2
i x),

⇔ µG̃i
( fi(x, µ̂i −λ,µ−1

p̂i
(µ̂i −λ))≥ µ̂i −λ

i = 1, · · · ,k. (53)

Because of (52), (53) and ˆµi −λ> µ̂i−λ∗, i = 1, · · · ,k,
the following inequalities hold.

µp̂i (p̂i) > µp̂i (p̂
∗
i ), i = 1, · · · ,k

µG̃i
( fi(x, ĥi , p̂i)) > µG̃i

( fi(x
∗,h∗i , p̂

∗
i )),

i = 1, · · · ,k

wherep̂i = µ−1
p̂i
(µi −λ) ∈ Pi , ĥi = µ̂i −λ ∈ Hi(Pi), i =

1, · · · ,k. This means that there exists somex∈X, p̂i ∈
Pi , ĥi ∈ Hi(Pi), i = 1, · · · ,k such thatµDGi

(x, ĥi , p̂i) >

µDGi
(x∗,h∗i , p̂

∗
i ), i = 1, · · · ,k. This contradicts the fact

thatx∗ ∈ X, p̂∗i ∈ Pi,h∗i ∈ Hi(Pi), i = 1, · · · ,k is aDG-
Pareto optimal solution.

5 AN INTERACTIVE
ALGORITHM

In this section, we propose an interactive algorithm
to obtain a satisfactory solution from among aDG-
Pareto optimal solution set. From Theorem 2, it
is not guaranteed that the optimal solution(x∗,λ∗)
of MINMAX4( µ̂) is DG-Pareto optimal, if it is not
unique. In order to guarantee theDG-Pareto op-
timality, we first assume thatk constraints (49) of
MINMAX4( µ̂) are active at the optimal solution
(x∗,λ∗), i.e.,

µ−1
G̃i
(µ̂i −λ∗)− (d1

i x∗−L−1(µ̂i −λ∗)α1
i x∗)

= T−1
i (µ−1

p̂i
(µ̂i −λ∗))

·(d2
i x∗−L−1(µ̂i −λ∗)α2

i x∗),

i = 1, · · · ,k. (54)

If the j-th constraint of (49) is inactive,i.e.,

µ−1
G̃j
(µ̂j −λ∗)− (d1

j x
∗−L−1(µ̂j −λ∗)α1

j x
∗)

> T−1
j (µ−1

p̂ j
(µ̂j −λ∗))

·(d2
j x

∗−L−1(µ̂j −λ∗)α2
j x

∗),

⇔ µ−1
G̃j
(µ̂j −λ∗)> f j (x

∗, µ̂j −λ∗,µ−1
p̂ j
(µ̂j −λ∗)),

(55)

we can convert the inactive constraint (55) into the
active one by applying the bisection method for the
reference membership value ˆµj ∈ [λ∗,λ∗+1].

For the optimal solution (x∗,λ∗) of
MINMAX4( µ̂), where the active conditions (54)
are satisfied, we solve theDG-Pareto optimality test
problem defined as follows.
[DG-Pareto Optimality Test Problem.]

max
x∈X,εi≥0,i=1,··· ,k

w=
k

∑
i=1

εi (56)

subject to

T−1
i (µ−1

p̂i
(µ̂i −λ∗)) · (d2

i x−L−1(µ̂i −λ∗)α2
i x)

+(d1
i x−L−1(µ̂i −λ∗)α1

i x)+ εi

= T−1
i (µ−1

p̂i
(µ̂i −λ∗)) · (d2

i x∗−L−1(µ̂i −λ∗)α2
i x∗)

+(d1
i x∗−L−1(µ̂i −λ∗)α1

i x∗), i = 1, · · · ,k (57)

For the optimal solution of the above test problem, the
following theorem holds.
Theorem 3.
For the optimal solution ˇx, ε̌i , i = 1, · · · ,k of the
test problem (56)-(57), ifw = 0 (equivalently,ε̌i =
0, i = 1, · · · ,k), x∗ ∈ X,µ−1

p̂i
(µ̂i − λ∗) ∈ Pi , µ̂i − λ∗ ∈

Hi(Pi), i = 1, · · · ,k is aDG-Pareto optimal solution.
Now, following the above discussions, we can

present the interactive algorithm in order to derive a
satisfactory solution from among aDG-Pareto optimal
solution set.
[An Interactive Algorithm.]
Step 1: The decision maker sets the membership
functionsµG̃i

(y), i = 1, · · · ,k for the fuzzy goals of the
objective functions in MOFRLP.
Step 2: The decision maker sets his/her membership
functionµp̂i (p̂i).
Step 3: Set the initial reference membership values
asµ̂i = 1, i = 1, · · · ,k.
Step 4: Solve MINMAX4(µ̂) by combined use of
the bisection methodλ ∈ Λ and the first-phase of the
two-phase simplex method of linear programming,
and obtain the optimal solution(x∗,λ∗). For the op-
timal solution(x∗,λ∗), The correspondingDG-Pareto
optimality test problem (56)-(57) is formulated and
solved.
Step 5: If the decision maker is satisfied with
the current values of theDG-Pareto optimal solu-
tion µDGi

(x∗,h∗i , p̂
∗
i ), i = 1, · · · ,k wherep̂∗i = µ−1

p̂i
(µ̂i −
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Table 1: The parameters for LR-type fuzzy random vari-
ables̃ci j .

j 1 2 3 j 1 2 3
d1

1 j 2 1 3 d2
1 j 1.3 1.1 1.2

d1
2 j -7 -7 -9 d2

2 j 1.1 1.2 1.1
α1

1 j 0.5 0.4 0.5 α2
1 j 0.05 0.04 0.05

α1
2 j 0.3 0.5 0.4 α2

2 j 0.05 0.04 0.05
β1

1 j 0.6 0.5 0.6 β2
1 j 0.06 0.05 0.06

β1
2 j 0.4 0.5 0.5 β2

2 j 0.06 0.06 0.05

λ∗),h∗i = µ̂i − λ∗, i = 1, · · · ,k, then stop. Otherwise,
the decision maker updates his/her reference member-
ship values ˆµi , i = 1, · · · ,k, and return to Step 4.

6 A NUMERICAL EXAMPLE

We consider the following two-objective fuzzy ran-
dom linear programming problem to demonstrate the
feasibility of the proposed method under the hypo-
thetical decision maker.
[MOFRLP]

min
x∈X

c̃1x= c̃11x1+ c̃12x2+ c̃13x3

min
x∈X

c̃2x= c̃21x1+ c̃22x2+ c̃23x3

where X = {(x1,x2,x3) ≥ 0 | 2x1 + 6x2 + 3x3 ≤
150,6x1 + 3x2 + 5x3 ≤ 175,5x1 + 4x2 + 2x3 ≤
160,2x1+ 2x2+ 3x3 ≥ 90}, and it is assumed that a
realizationc̃i j (ω) of an LR-type fuzzy random vari-
able c̃i j is an LR fuzzy number whose membership
function is defined as follows.

µ̃ci j (ω)(s) =





L

(
d1

i j+t̄i (ω)d2
i j−s

α1
i j+t̄i (ω)α2

i j

)
(s≤ d̄i j (ω)),

R

(
s−d1

i j+t̄i (ω)d2
i j

β1
i j +t̄i(ω)β2

i j

)
(s> d̄i j (ω)),

whereL(t) = R(t) = max{0,1− t}, and the parame-
tersd1

i j ,d
2
i j , α1

i j ,α2
i j ,β1

i j ,β2
i j are given in Table 1.

Moreover,t̄i , i = 1,2 are Gaussian random variables
defined as̄ti ∼ N(0,1).

In MOFRLP, let us assume that the hypothetical
decision maker sets the membership functions as fol-
lows (Step 1, 2).

µG̃1
( f1(x,h1, p̂1)) =

96.42857− f1(x,h1, p̂1)

96.42857−75

µG̃2
( f2(x,h2, p̂2)) =

(−285)− f2(x,h2, p̂2)

(−285)− (−332.143)

µp̂1(p̂1) =
p̂1−0.401066

(0.714968−0.401066)

µp̂2(p̂2) =
p̂2−0.213304

(0.812859−0.213304)

Set the initial reference membership values as
(µ̂1, µ̂2) = (1,1) (Step 3), and solve MINMAX4(µ̂) by
combined use of the bisection method with respect to
λ and the first-phase of the two-phase simplex method
of linear programming to obtain the corresponding
DG-Pareto optimal solution(x∗,λ∗) (Step 4).

µG̃1
( f1(x

∗,h∗1, p̂
∗
1)) = µp̂1(p̂

∗
1) = 0.564271

µG̃2
( f2(x

∗,h∗2, p̂
∗
2)) = µp̂2(p̂

∗
2) = 0.564271

The hypothetical decision maker is not satisfied with
the current value of theDG-Pareto optimal solu-
tion (x∗,λ∗), and, in order to improveµDG2

(·) =

min{µG̃2
(·),µp̂2(·)} at the expense ofµDG1

(·) =

min{µG̃1
(·),µp̂1(·)}, he/she updates his/her reference

membership values as(µ̂1, µ̂2) = (0.5,0.6) (Step 5).
Then, the correspondingDG-Pareto optimal solution
is obtained by solving MINMAX4(µ̂) (Step 4).

µG̃1
( f1(x

∗,h∗1, p̂
∗
1)) = µp̂1(p̂

∗
1) = 0.514421

µG̃2
( f2(x

∗,h∗2, p̂
∗
2)) = µp̂2(p̂

∗
2) = 0.614421

For the current value of theDG-Pareto optimal solu-
tion, the hypothetical decision maker updates his/her
reference membership values(µ̂1, µ̂2) = (0.52,0.59)
in order to improveµDG1

(·) at the expense ofµDG2
(·)

slightly (Step 5). The correspondingDG-Pareto op-
timal solution is obtained by solving MINMAX4(µ̂)
(Step 4).

µG̃1
( f1(x

∗,h∗1, p̂
∗
1)) = µp̂1(p̂

∗
1) = 0.529412

µG̃2
( f2(x

∗,h∗2, p̂
∗
2)) = µp̂2(p̂

∗
2) = 0.599412

Then, since the hypothetical decision maker is satis-
fied with the current value of theDG-Pareto optimal
solution, stop the interactive processes (Step 5). The
interactive processes under the hypothetical decision
maker are summarized in Table 2.
In order to compare our proposed approach with the

previous ones, let us obtain one of the Pareto optimal
solutions of MOP8(p̂), which is defined in member-
ship space,i.e., µG̃i

( fi(x,hi, p̂i)), i = 1, · · · ,k. Simi-
lar to MINMAX3( µ̂), we can formulate the following
minmax problem to obtain the Pareto optimal solution
of MOP8(p̂).
[MINMAX5 (p̂, µ̂)]

min
x∈X,hi∈[0,1],i=1,··· ,k,λ∈Λ

λ

subject to

µ̂i −µG̃i
( fi(x,hi , p̂i)) ≤ λ, i = 1, · · · ,k,

µG̃i
( fi(x,hi , p̂i)) = hi , i = 1, · · · ,k.
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Table 2: Interactive processes.

@ 1 2 3
µ̂1 1 0.5 0.52
µ̂2 1 0.6 0.59

µDG1
(x∗,h∗1, p̂

∗
1) 0.564271 0.514421 0.529412

µDG2
(x∗,h∗2, p̂

∗
2) 0.564271 0.614421 0.599412

p̂∗1 0.578193 0.562545 0.567250
p̂∗2 0.551616 0.581684 0.572685

f1(x∗,h∗1, p̂
∗
1) 84.3370 85.4053 85.0840

f2(x∗,h∗2, p̂
∗
2) -311.601 -313.966 -313.258

In MINMAX5 (p̂, µ̂), it is assumed that the
decision maker sets his/her permissible probabil-
ity levels as ˆp1 = p̂2 = 0.75, and the reference
membership values as ˆµ1 = µ̂2 = 1. Then, the
corresponding Pareto optimal solution is obtained
as f1(x∗,h∗1,0.75) = 94.0338, f2(x∗,h∗2,0.75) =
−290.269,µG̃i

( fi(x∗,h∗i ,0.75))= 0.11176, i = 1,2. In
our proposed algorithm, by solving MINMAX4(µ̂)
for the reference membership values ˆµ1 = µ̂2 =
1, the DG-Pareto optimal solution is obtained as
f1(x∗,h∗1, p̂

∗
1) = 84.3370, f2(x∗,h∗2, p̂

∗
2) = −311.601,

p̂∗1 = 0.578193, p̂∗2 = 0.551616 (see the first iteration
of Table 2). This means that a proper balance between
permissible probability levels and the corresponding
objective functions in a fractile optimization model is
attained in membership space.

7 CONCLUSIONS

In this paper, we have proposed an interactive fuzzy
decision making method for multiobjective fuzzy ran-
dom linear programming problems to obtain a satis-
factory solution from among a Pareto optimal solu-
tion set. In the proposed method, the decision maker
is required to specify the membership functions for
the fuzzy goals of not only objective functions but
also the permissible probability levels. Pareto optimal
concepts calledDp-Pareto optimal andDG-Pareto op-
timal are introduced. The satisfactory solution can be
obtained by updating the reference membership val-
ues and solving the corresponding minmax problem
based on the linear programming technique. At the
optimal solution of MINMAX2(µ̂) or MINMAX4 (µ̂),
it is expected that a proper balance between permis-
sible possibility levels for a probability maximization
model and permissible probability levels for a fractile
optimization model is attained. In general, in order to
deal with MOFRLP, the decision maker must specify
many parameters in advance. Fuzzy operators such as
the fuzzy decision will lighten his/her burden to spec-
ify such parameters as fixed values.
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