the Spanish Government, ModelAccess (TIN2010-15549 project); by the Diputaci´on
Foral de Gipuzkoa, Zer4You (DG10/5); and by the Basque Government’s SAIOTEK
program, Datacc (S-PE11UN097).
References
1. Anitha, A. A new web usage mining approach for next page access prediction. International
Journal of Computer Applications, 8(11):7–10, 2010.
2. Brusilovsky P., Kobsa A. and Nejdl W. The Adaptive Web: Methods and Strategies of Web
Personalization LNCS 4321, Springer, 2007.
3. Chen X., Zhang X. A popularity-based prediction model for web prefetching. Computer,
36(3):63–70, 2003.
4. Chordia B.S., Adhiya K.P. Grouping Web Access Sequences Using Sequence Alignment
Method. In Indian Journal of Computer Science and Engineering (IJCSE), Vol. 2(3), (2011)
5. The Common Log Format http://www.w3.org/Daemon/User/Config/Logging.html
#common-logfile-format
6. Cooley R., Mobasher B. and Srivastava J. Data preparation for mining world wide web
browsing patterns. Knowledge and Information Systems, 1(1), 1999.
7. Dasarathy B.V. Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques IEEE
Computer Society Press, Silver Spring, MD, 1991.
8. Desikan P., Srivastava J., Kumar V. and Tan P.N. Hyperlink Analysis - Techniques and
Applications. Army High Performance Computing Center Technical Report, 2002.
9. Garc´ıa E., Romero C., Ventura S. and De Castro C. An architecture for making recommen-
dations to courseware authors using association rule mining and collaborative filtering. User
Modeling User and Adapted Interaction, 19(1-2), pages 99–132, 2009.
10. Gusfield D. Algorithms on strings, trees, and sequences. Cambridge University Press, 1997.
11. The Internet Traffic Archive. http://ita.ee.lbl.gov/. ACM SIGCOMM.
12. Jain A.K., Dubes R.C. Algorithms for Clustering Data. Prentice-Hall, Upper Saddle River,
NJ, USA, 1988.
13. Kosala R. and Blockeel H. Web Mining Research: A Survey. ACM SIGKDD Explorations
Newsletter, 2(1), pages 1–15, 2000.
14. Liu B. Web Data Mining. Exploring Hyperlinks, Contents, and Usage Data. Springer, 2007.
15. Liu L. and
¨
Ozsu M.T. Encyclopedia of Database Systems. In: PAM (Partitioning Around
Medoids). Springer US, 2009.
16. Makkar P., Gulati P. and Sharma A. A novel approach for predicting user behavior for
improving web performance. International Journal on Computer Science and Engineering
(IJCSE), 2(4):1233–1236, 2010.
17. Mobasher B. Web Usage Mining. In: Web Data Mining: Exploring Hyperlinks, Contents
and Usage Data. Springer, Berlin, 2006.
18. NASA-HTTP logs. HTTP requests to the NASA Kennedy Space Center WWW server.
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html, in Florida, 1995.
19. National Aeronautics and Space Administration. http://www.nasa.gov/, 2010.
20. Pierrakos D., Paliouras G., Papatheodorou C. and Spyropoulos C.D. Web Usage Mining as a
Tool for Personalization: A Survey User Modeling and User Adapted Interaction, 13:311–
372, 2003.
21. Srivastava J., Desikan P. and Kumar V. Web Mining - Concepts, Applications & Research
Directions. In Foundations and Advances in Data Mining. Springer, Berlin, 2005.
22. Zaki M.J. SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learn-
ing, 42:31–60, 2001.
80