New Mobility Metric based on MultiPoint Relay Life Duration
Ali Ouacha
1
, Noureddine Lakki
1
, Ahmed Habbani
1,2
and Jamal El Abbadi
1
1
Laboratoire d’Electronique et de Communications LEC, Ecole Mohammadia d’Ing´enieurs EMI, Universit´e Mohammed
V-Agdal UM5A, BP 765, avenue Ibn Sina Agdal 10000, Rabat, Maroc
2
Laboratoire SIME, Ecole Nationale Sup´erieure d’Informatique et d’Analyse des Syst`emes ENSIAS, Universit´e Mohammed
V-Souissi UM5S, BP 713, Avenue Mohammed ben Abdallah Regragui, Agdal 10000, Rabat, Maroc
Keywords:
Age of Death, MPR Selection, Link Duration, Mobility Metric, OLSR and Routing Protocols.
Abstract:
Optimized Link State Routing (OLSR) is a proactive protocol designed to operate in Mobile Ad Hoc Networks
(MANET). In this protocol, the topology is based on MultiPoint Relay (MPR) Mechanism. However, the
loss of one or many MPRs caused by their movement affects the link state of the network. Therefore, the
contribution of this paper is to keep the network links between the nodes and MPRs in stable state as long as
possible. It was done by calculating a new parameter named Average Age of Death which estimates the life
duration of MPRs. The experimental results illustrate that this parameter is affected by the environment (speed
of node, network density and others). This result provides to use this parameter as a new mobility metric that
can be used in the MPR sets Calculation.
1 INTRODUCTION
Currently, devices are becoming increasingly popu-
lar as they provide users communications by using
wireless technology. Those devices form an arbitrary
network, titled MANET(Corson and Macker, ). In
such network, the nodes communication without us-
ing any infrastructure requires a self management of
the network. Consequently, several routing protocols
are dedicated to this kind of network. Those proto-
cols can be classified on two main categories: The
first one is a reactive protocol that builds paths at the
request and the second one is proactive protocol that
maintains an updated routing table by using periodic
exchanges of control messages. One of those proac-
tive protocols, which proved its efficiency in large
and dense environments, is the Optimized Link State
Routing (OLSR)(Clausen and Jacquet, 2003).
In MANETs, mobility node sthat present an ad-
vantage to the users is a major handicap in this kind
of networks. Indeed, the mobility of nodes is, in the
most case, the origin of break links caused with the
loss of one or more MPRs which are the key elements
in the definition of the network topology. Hence,
the requirement to produce techniques to quantify the
node movements degree and produce values that can
be used in the process of building MPR sets or data
paths construction. Our aim is to provide a new ap-
proach to maintain, as long as possible, links between
nodes and their MPRs. This approach is based on the
average age of death for MPRs. Our first challenge
in this paper is to show how this new metric will be
calculated. Thereafter, we will study the impact of
the variation of environment parameter on this met-
ric. The second step is to take advantage of this new
mobility metric by its integration in the MPR set se-
lection processes. So, we aim, by selecting nodes with
large average age of death, to augment stability of the
network and prolong lifetime of links which are used
in data transfer.
The rest of this paper is organized as follows. In
the next section we provide an overview on the OLSR
protocol. The third section presents a short descrip-
tion of related works for some different metrics de-
veloped for nodes mobility calculation. The fourth
section is devoted for our contribution concerning the
average age of death for MPRs. It also illustrates
the simulation environment. Before concluding, we
present the results about our work.
2 OLSR OVERVIEW
The Optimized Link State Routing (OLSR) is a proac-
tive protocol proposed by HIPERCOM-INRIA team
and defined by RFC 3626. It is recognized as one
of protocols base used in MANET networks envi-
ronment. In this protocol, every node must periodi-
305
Ouacha A., Lakki N., Habbani A. and El Abbadi J..
New Mobility Metric based on MultiPoint Relay Life Duration.
DOI: 10.5220/0004102203050309
In Proceedings of the International Conference on Signal Processing and Multimedia Applications and Wireless Information Networks and Systems
(WINSYS-2012), pages 305-309
ISBN: 978-989-8565-25-9
Copyright
c
2012 SCITEPRESS (Science and Technology Publications, Lda.)
cally update its routing table. This is accomplished
by broadcasting periodic control messages. However,
to avoid network congestion, OLSR uses the concept
of multipoint relays (MPR). This means, only nodes
selected as MPR are authorized to retransmit traffic
control intended to be broadcasted into the whole net-
work. Therefore, the MPR mechanism reduces sig-
nificantly the number of control messages forwarding
in the network. To calculate the MPR set, each node
in the network use periodic messages named HELLO-
messages received from its neighbors. To diffuse in-
formation about Topology, OLSR uses a second type
of messages named TC-messages (Topology Control
messages). Information acquired from TC-messages
allows nodes to compute and update their routing ta-
ble.
Despite the great success of the OLSR in
MANETs, several factors disrupt its performance.
But the great threat comes from physical mobility of
nodes. It has negative impact on the network topol-
ogy. To reduce this impact, the authors of several
studies (JOA-NG and LU, 1999)(Kumar and Suman,
2011)2011(Larson and Hedman, 1998)(Oudidi et al.,
2010)(Shukla, 2001) suggest many different metrics
to calculate nodes mobility and make it a quantifiable
value that can be used in the calculation process of
MPR-set or taken into account in the path computa-
tion. In the Following, we present brief description of
some of such metrics.
3 RELATED WORK
Several Studies propose various metrics to calculate
the mobility of nodes in ad hoc networks. They can be
classified into several categories (Kumar and Suman,
2011)(Oudidi et al., 2010).
The first one includes direct mobility metrics.
They are flexible and easy measurement methods
which are based on direct information extracted from
nodes movement. For example, the speed or average
speed can be one of this simple direct metrics. More-
over, various papers, published by many authors, fall
into this category of metrics. In (Larson and Hedman,
1998), the average speed is based on the relative ve-
locity for two nodes of the network. The average mo-
bility M (relative mobility) of node n can be also rep-
resented as the average change in the average distance
of the node n during a time interval T t being the
duration of the simulation and t computation time.
Or the average distance of a node n at time t is the
average of the distances separating it from each node
i in the network.
The Paper presented by (Vazifehdan et al., 2012)
is another sample of direct mobility metrics. the main
equation for the authors is how long any two arbitrary
nodes in a wireless ad hoc network with a random
topology can communicate with each other without
interruptiondue to lack of routes between them before
their own battery runs out. To answer this question,
they utilize node-to-node communication lifetime. It
is defined as the duration that two nodes can commu-
nicate with each other without any break. In the case
where communications can be established through
several alternative routes, sometimes communication
might be ended due to the failure of one of the two
nodes (source node and destination node) or failure
of the last available route between them. In other
case, batteries depletion of one or more nodes form
paths can be the reason of the communication failure.
Based on this, to determine node-to-node communi-
cation lifetime, the authors consider the energy con-
sumption rate of nodes.
The second type of mobility metrics is named de-
rived mobility metrics. Those metrics use param-
eters characterizing the state of links in the network
like the rate of changes of link states or the average
length of the path. In (Oudidi et al., 2010), authors
observe that each node in the network can be in one
of four states (the node moves and its neighbors are
fixed, the node is stable and its neighbors are mov-
ing, the node and its neighbors are moving, the node
and its neighbors are immobile) which is caused by
changes in the links state. So, they define a new met-
ric of measurement of mobility that is based on the
number of nodes entering (or exiting) in the neigh-
borhood in a laps of time t .
With the third category of the mobility metrics,
lifetime of links or routes is used. In the research
made in (Yawut et al., 2007), in order to ameliorate
the OLSR performance, the authors attempt to im-
prove the MPRs selection procedure. They modify
the Link tuple by adding a new field named Start Con-
nection Time (Start
t). With this, the node calculates
in the first step the link duration (LD) which is the
difference between current time and Start t for each
node in the neighborhood. After that, the procedure of
MPRs selection is modified in order to choose nodes
with the longest LD when D(y) of MPR candidate
nodes are the same. Where D(y), the degree of node y,
is defined (Clausen and Jacquet, 2003) as the number
of symmetric neighbors of node y excluding all the
members of N and the node performing the computa-
tion and N is the subset (Clausen and Jacquet, 2003)
of neighbors of the node (node with single interface)
performing the computation. For example, with the
nodes having the same value of Willingness, reacha-
bility and Degree, we have to select the one in which
the LD is the greatest.
WINSYS2012-InternationalConferenceonWirelessInformationNetworksandSystems
306
Figure 1: Example of the AAD computation.
If the research presented above is based on the
link duration, in (Lenders et al., 2006) the authors
study the impact of nodes mobility on the link and
on the route lifetime in the network. Their first goal
is to determine the reason of link breaks. Therefore,
they differentiate between link transmission failures
caused by movement of one of the linked nodes, and
other failures caused by interference. So, to represent
link and route lifetimes, the authors give two different
viewpoints: In the first, the total lifetime of a link or
route describes the time interval between the moment
the link (or route) appeared until it breaks; in the sec-
ond, the residual lifetime represents the time interval
between a sample moment after the creation until the
link or path breaks. However, the residual lifetime is
also considered in the remainingpart of their research.
Since the protocol is particularly suitable for large
and dense networks as the technique of MPRs works
well in this context, we aim to increase the life dura-
tion of elements in this set of nodes. Therefore, the
stability of network becomes an important factor
4 OUR CONTRIBUTION
Before showing how we calculate Age of Death for
MPRs, let us give some definitions: n
i
is the node
number i executing the computation. Node is con-
sidered death when it lefts the MPR Set of the node
n
i
. t
j
is the time between two successive MPR Sets
Computation ( Age). nb
mpr out
j
is the number of
nodes which left the MPR Set in t
j
period ( Number
of Deaths). N is the number of nodes in the network.
The Average Age of Death for MPRs ( AAD) of
the node n
i
until the MPR Set computation number M
is defined by equation (1). Figure 1 present an exam-
ple for AAD metric computation.
AAD
i
=
k=M
k=0
t
k
nb
mpr out
k
k=n
k=1
t
k
(1)
The Average Age of Death for the entire network
during the simulation time is defined by equation (2).
AAD =
i=N
i=0
AAD
i
N
(2)
5 SIMULATION A RESULTS
5.1 Simulation Environment and
Parameters
In our study, we used a standard version of OLSR
developed by MASIMUM (MANET Simulation and
Implementation at the University of Murcia) which
we integrated in NS2 (version 2.34).
Our network is consisted of a variable numbers
of mobile nodes (20, 30, 40, 50 and 60 nodes for
each simulation) moving in an area of 1000 x 1000
m. Each node moves according to the RWP (Random
WayPoint) mobility model (Bai and Helmy, 2004)
with pause time fixed to 0 s and maximum speed
varies between 5 and 30 m/s with a step of 5. For each
number of nodes and each max speed several simula-
tions are done. The scenario that defines the nodes
movement is regenerated at the beginning of all sim-
ulations. To generate traffic in the network, 10 nodes
are randomly selected to be a source of CBR (Con-
stant Bit Rate) traffic. And these selected nodes use
UDP (User Datagram Protocol) connections to send
Packets with 512 bytes of size in the order of one
packet every 2.5 second.
5.2 Results and Discussions
Average Age of Death: An MPR leaving the neigh-
borhood of node is considered as dead. In the Fig-
ure 2, we trace the average age of death based on the
speed for different numbers of nodes
0
0,01
0,02
0,03
0,04
0,05
0,06
0,07
5 10 15 20 25 30
Speed (m/s)
Average Age of Death
(AAD)
20 Nodes
30 Nodes
40 Nodes
50 Nodes
60 Nodes
Figure 2: AAD depending on speed for each number of
nodes.
From this histogram, we see that the increase
number of nodes causes increase of average age of
death for all speeds values from 5 to 30 m/s. But,
with increasing the number of nodes, the average age
of death is reduced. We also note that the average age
NewMobilityMetricbasedonMultiPointRelayLifeDuration
307
of death is greatest for maximum speed and minimum
number of nodes.
The increase in speed which cause the increase of
average age of death is interpreted by the fact that the
increase in speed increases also the rate of changes in
the network. In this respect, when the network topol-
ogy changes, the number of elements in the neighbor-
hood change as well. So the number of MPR varies
potentially with those changes. This is seen also in
highly mobile environmentseven if there is not a large
number of nodes.
Average of the Maximum Life of MPRs: The max-
imum life of MPR is the maximum life time recorded
of MPRs. The Figure 3 shows the average of the max-
imum life of MPRs based on the speed for each num-
ber of nodes.
0
0,5
1
1,5
2
2,5
5 10 15 20 25 30
Speed (m/s)
Average of the maximum
Life of MPRs (Second)
20 Nodes
30 Nodes
40 Nodes
50 Nodes
60 Nodes
Figure 3: Average of the Maximun life of MPRs depending
on speed for each number of nodes.
For all values of the speed, we can see that with
the increase in the number of nodes, the average of
the maximum life of MPRs decreases. But with the
increase in the average speed, the maximum life of
MPR increases.
With high speed, there is always movement in the
network. What explains the increase in the average of
the maximum life of MPRs is that there are many sets
of MPR which are calculated during these periods.
According to the results previously recorded, we
note that our new metric (AAD) shows a close re-
lationship with the network environment (density,
movement of stations). In other words, this metric
reflects the life of MPRs depending on the network
environment. Consequently, by using it as a new pa-
rameter in the MPRs selection presses, we give a new
OLSR protocol version that is named as OLSR-AAD.
The results depicted over here are related to the
environment approximately dense where the number
of nodes is equals to 50. In those figures shown blow
(Figure 4, 5 and 6), we respectively plot the varia-
tion of Packet Delivered Ration (PDR), Normalized
Routing Load (NRL), Average end to end Delay and
Average Throughput Traffic depending on nodes max
speed for three versions of OLSR protocol. The blue
curves represent the standard OLSR (OLSR-STD).
The green curves concern the Mob OLSR (OLSR-
MOB) proposed in [10]. Our version of the OLSR
protocol (OLSR-AAD) is represented with the red
curves.
Packet Delivered Ratio (PDR): The Figure 5 shows
the behavior of the PDF (rate of successful packet de-
livery) depending on the speed of the three versions
of the OLSR protocol. We found that these three
versions retain approximately the same paces for all
values of speed. In the range of 5 to 15 m/s version
OLSR-MOB go beyond the other versions but in other
interval our version OLSR-AAD has increased com-
pared to other versions. In addition, we can see that
OLSR-AAD performs well in terms of PDF, in com-
parison with other protocols (OLSR-STD and OLSR-
MOB) for all the maximum speeds. So our protocol
is more suitable in highly mobile environments.
50
55
60
65
70
75
80
5 10 15 20 25 30
Speed (m/s)
Packet Delivered Ratio
(PDR)
OLSR STD
OLSR AAD
OLSR MOB
Figure 4: PDR depending on nodes speed.
Average Delay: For the Average time End-to-End
(Moy-End-to-End), we note that in the speed inter-
val from 5 to 15 m/s the values presented by the
three OLSR versions are approached. But from 15
m/s there is a change between the three versions of
OLSR. we Note also that for both values of speed
15 and 30m/s the Average time is the minimum for
the OLSR-AAD Protocol. Note that for the majority
of speed OLSR-AAD protocol optimizes the average
delay between the source and destination especially
in highly mobile environments.
0
0,2
0,4
0,6
0,8
1
1,2
1,4
1,6
5 10 15 20 25 30
Speed (m/s)
Average Delay
OLSR STD
OLSR AAD
OLSR STD
Figure 5: Average Delay Depending of nodes max speed.
Average Throughput Traffic: Average throughput
allows to measure the quantity of informationper time
WINSYS2012-InternationalConferenceonWirelessInformationNetworksandSystems
308
unit transmitted in a communication channel accord-
ing to the curve we find that for the speeds 5, 10 and
15m/s OLSRMOB protocol optimizes the other two
versions. But in the interval 15 to 30 m/s OLSR-AAD
protocol improves the other two versions of OLSR.
Therefore the modified version of OLSR protocol is
well suited especially in highly mobile areas.
2200
2400
2600
2800
3000
3200
3400
5 10 15 20 25 30
Speed (m/s)
Average Throughput Traffic
OLSR STD
OLSR AAD
OLSR MOB
Figure 6: Average Throughput Trafic depending of nodes
max seeds.
6 CONCLUSIONS
Our problem is the high mobility which would harm
the operating of the network. Nodes, (may be an
MPR) coming out from the neighborhood and cause
changes in the link status of the network, the result is
the rupture of one or more links, a thing which contra-
dicts the state of the routing table before the recalcula-
tion of MPR set. Our proposed solution was to calcu-
late a new metric named Age of death for MPRs that
was always updated and gives an idea of life time of
MPRs. Indeed, the results recorded during the simu-
lations show that this parameter is a close relationship
with the network environment (density, movement of
stations). In other words, this parameter reflects the
life of MPRs depending on the network environment.
By its integration in the MPR set calculation proce-
dure, we enhance the performance of the network.
So, compared to the other OLSR protocols versions
(OLSR-STD and OLSR-Mob), our modified version
of OLSR protocol (OLSR-AAD) is well suited espe-
cially in highly mobile areas.
Despite those better results, OLSR-AAD can be
more perfect if we add other metrics to the MPR se-
lection process or to the routing table calculation. For
example, making paths with nodes having more lev-
els of energy can reduce the link breaks probabil-
ity. Moreover, using clustering metrics can provide
a longer life for MPRs. Due to this, our next goals are
to integrate more metrics in order to increase life du-
ration of paths. Moreover, this metric that is actually
restricted to MPRs can be extended to be applied to
all types of neighbors, whether MPR or not .
REFERENCES
Bai, F. and Helmy, A. (2004). A survey of mobility models
in wireless ad hoc networks. Wireless Ad Hoc and
Sensor Networks.
Clausen, T. and Jacquet, P. (2003). Optimized link state
routing protocol (olsr). Network Working Group, RFC
3626.
Corson, S. and Macker, J. Mobile ad hoc networking
(manet): Routing protocol performance issues and
evaluation considerations. Network Working Group,
RFC 2501.
JOA-NG, M. and LU, I. T. (1999). A peer-to-peer zone-
based two-level link state routing for mobile ad roc
networks. IEEE Journal on Selected Areas in Com-
munications, 17(8):1115 1125.
Kumar, S. S. and Suman, C. S. B. (2011). Classifica-
tion and evaluation of mobility metrics for mobility
model movement patterns in mobile ad-hoc networks.
International journal on applications of graph the-
ory in wireless ad hoc networks and sensor networks
(GRAPH-HOC), 3:25–38.
Larson, T. and Hedman, N. (1998). routing protocols in
wireleww ad-hoc networks- a simulation study, mas-
ter’s thesis, computer science and engineering, scool:
Luela university of technology.
Lenders, V., Wagner, J., and May, M. (2006). Analyzing
the impact of mobility in ad hoc networks realman. In
the 2nd international workshop on Multi-hop ad hoc
networks: from theory to reality : ACM New York, NY,
USA.
Oudidi, K., Hajami, A., and Elkoutbi, M. (2010). Qos rout-
ing for mobile adhoc networks andperformance analy-
sis using olsr protocol. IJCSIS (International Journal
of Computer Science and Information Security), ISSN
1947-5500, 8.
Shukla, D. (2001). Mobility models in ad hoc networks,
scool fresit-itt, bombay.
Vazifehdan, J., Prasad, R. V., and Niemegeersal., I. (2012).
On the lifetime of node-to-node communication in
wireless ad hoc networks. Computur. Networks., 56.
Yawut, C., Dhaou, R., and Paillassa, B. (2007).
The olsr performance enhancement using link
duration irit laboratory enseeiht network
& telecommunication dpt toulouse france.
http://citeseerx.ist.psu.edu/viewdoc/summary?,
doi=10.1.1.101.4124.
NewMobilityMetricbasedonMultiPointRelayLifeDuration
309