Table 3: Average of minimum values obtained over 25 trials with RO function (D = 30, population size 50, CR = 0.5).
Strategy
Scaling factor F
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
DE-PSO-APGA1 - - - - - - - - - -
DE-PSO-APGA2 0 0 0 0 0 0 0 - - -
DE-PSO-APGA3 2.96e-30 5.06e-30 2.9e-197 2.9e-197 2.8e-197 0 0 - - -
DE-PSO-APGA4 0 0 0 0 0 - - - - -
DE-PSO-APGA5 - - - - - - - - - -
DE-PSO-APGA6 5.31e-30 1.6e-118 - - - - - - - -
DE-PSO-APGA7 - - - - - - - - - -
DE-PSO-APGA8 - - - - - - - - - -
Table 4: Results by DE-PSO-APGA with population size
100 (F = 0.1, CR = 0.5). Mean indicates average of mini-
mum values obtained, ”Std.” stands for standard deviation.
Func Dim. Max Gen. Mean (Std.)
RA
30 500 0.00e+00 (0.00e+00)
100 1500 0.00e+00 (0.00e+00)
RI
30 500 0.00e+00 (0.00e+00)
100 1500 0.00e+00 (0.00e+00)
GR
30 500 0.00e+00 (0.00e+00)
100 1500 0.00e+00 (0.00e+00)
AC
30 500 4.44e-16 (0.00e+00)
100 1500 4.44e-16 (0.00e+00)
RO
30 500 0.00e+00 (0.00e+00)
100 1500 0.00e+00 (0.00e+00)
Table 5: Comparison results of PSO, DE, DE-PSO and DE-
PSO-APGA (D = 30, population size 30, max generation
3000).
Func PSO DE DE-PSO
DE-PSO
-APGA
RA
37.82 2.531 1.614 0
(7.456) (5.19) (3.885) (0)
RI
- - - 0
- - - (0)
GR
0.018 0 0 0
(0.023) (0) (0) (0)
AC
1.0e-08 7.3e-15 3.7e-15 4.4e-16
(1.9e-08) (7.7e-16) (0) (0.0e+0)
RO
81.27 31.14 24.2 0
(41.22) (17.12) (12.31) (0)
ficient performance on many benchmark problems.
5 CONCLUSIONS
To overcome the computational complexity, a new
strategy using DE for Adaptive Plan system of PSO
with GA called DE-PSO-APGA has been proposed to
solve a huge scale optimization problem, and to im-
prove the convergence to the optimal solution. Then,
we verify the effectiveness of the DE-PSO-APGA by
the numerical experiments performed five benchmark
functions.
We can confirm that the DE-PSO-APGA dramat-
ically reduces the calculation cost and improves the
convergence towards the optimal solution.
REFERENCES
Clerc, M. and Kennedy, J. (2002). The particle swarm-
explosion, stability and convergence in a multidimen-
sional complex space. In IEEE Trans. Evol. Comput.
Das, S., Abraham, A., and Konar, A. (2008). Parti-
cle swarm optimization and differential evolution al-
gorithms: Technical analysis, applications and hy-
bridization perspectives. In Studies in Computational
Intelligence (SCI).
Eberhart, R. C. and Shi, Y. (2000). Comparing inertia
weights and constriction factors in particle swarm op-
timization. In Proc. Congr. Evol. Comput.
Feoktistov, V. and Janaqi, S. (2004). Generalization of
the strategies in differential evolution. In Proc. 18th
IPDPS.
Goldberg, D. E. (1989). Genetic Algorithms in Search Op-
timization and Machine Learning. Addison-Wesley.
Hasegawa, H. (2007). Adaptive plan system with genetic al-
gorithm based on synthesis of local and global search
method for multi-peak optimization problems. In 6th
EUROSIM Congress on Modelling and Simulation.
Kennedy, J. and Eberhart, R. (2001). Swarm Intelligence.
Morgan Kaufmann Publishers.
Pant, M., Thangaraj, R., Grosan, C., and Abraham, A.
(2008). Hybrid differential evolution - particle swarm
optimization algorithm for solving global optimiza-
tion problems. In Third International Conference on
Digital Information Management (ICDIM).
Price, K., Storn, R., and Lampinen, J. (2005). Differential
Evolution - A Practical Approach to Global Optimiza-
tion. Springer, Berlin, Germany.
Shi, Y. and Eberhart, R. C. (1999). Empirical study of par-
ticle swarm optimization. In Proc. IEEE Int. Congr.
Evol. Comput.
Smith, J. E., Hart, W. E., and Krasnogor, N. (2005). Recent
Advances in Memetic Algorithms. Springer.
Storn, R. and Price, K. (1997). Differential evolution - a
simple and efficient heuristic for global optimization
over continuous spaces. In Journal Global Optimiza-
tion.
IJCCI2012-InternationalJointConferenceonComputationalIntelligence
264