A Grid-based Genetic Algorithm for Multimodal Real Function Optimization
Jose M. Chaquet, Enrique J. Carmona
2012
Abstract
A novel genetic algorithm called GGA (Grid-based Genetic Algorithm) is presented to improve the optimization of multimodal real functions. The search space is discretized using a grid, making the search process more efficient and faster. An integer-real vector codes the genotype and a GA is used for evolving the population. The integer part allows us to explore the search space and the real part to exploit the best solutions. A comparison with a standard GA is performed using typical benchmarking multimodal functions from the literature. In all the tested problems, the proposed algorithm equals or outperforms the standard GA.
References
- Affenzeller, M. and Wagner, S. (2005). Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms, pages 218-221. Number 2 in Adaptive and Natural Computing Algorithms. Springer Vienna.
- Davis, L. (1991). Hybridization and numerical representation, volume The Hanbook of Genetic Algorithms, pages 61-71. New York: Van Nostrand Reinhold.
- Deep, K. and Thakur, M. (2007a). A new crossover operator for real coded genetic algorithms. Applied Mathematics and Computation, 188(1):895-911.
- Deep, K. and Thakur, M. (2007b). A new mutation operator for real coded genetic algorithms. Applied Mathematics and Computation, 193(1):211-230.
- Dellnitz, M., Schutze, O., and Sertl, S. (2001). Finding zeros by multilevel subdivision techniques. IMA Journal of Numerical Analysis, 22:2002.
- Garcia-Martinez, C., Lozano, M., Herrera, F., Molina, D., and Sanchez, A. (2008). Global and local real-coded genetic algorithms based on parent-centric crossover operators. European Journal of Operational Research, 185(3):1088-1113.
- Hsu, C. (1988). Cell-to-cell mapping. a method of global analysis for nonlinear systems. ZAMM - Journal of Applied Mathematics and Mechanics, 68(12):654- 655.
- Janikow, C. and Michalewicz, Z. (1991). An experimental comparison of binary and floating point representations in genetic algorithms, volume Proceedings of the Fourth International Conference on Genetic Algorithms, pages 31-36. Morgan Kaufmann.
- Korejo, I., Yang, S., and Li, C. (2010). A directed mutation operator for real coded genetic algorithms. In EvoApplications (1), volume 6024 of Lecture Notes in Computer Science, pages 491-500. Springer.
- Li, R. (2009). Mixed-Integer Evolution Strategies for Parameter Optimization and their Applications to Medical Image Analysis. PhD thesis, Leiden.
- Rudolph, G. (1994). An evolutionary algorithm for integer programming. In Parallel Problem Solving from Nature - PPSN III, Lecture Notes in Computer Science, pages 139-148. Springer.
- Tutkun, N. (2009). Optimization of multimodal continuous functions using a new crossover for the real-coded genetic algorithms. Expert Systems with Applications, 36(4):8172-8177.
- Weise, T., Zapf, M., Chiong, R., and Nebro, A. J. (2009). Why Is Optimization Difficult?, volume 193 of Studies in Computational Intelligence, chapter 1, pages 1-50. Springer-Verlag Berlin Heidelberg.
- Wright, A. (1991). Genetic algorithms for real parameter optimization. In Foundations of Genetic Algorithms, pages 205-218. Morgan Kaufmann.
Paper Citation
in Harvard Style
M. Chaquet J. and J. Carmona E. (2012). A Grid-based Genetic Algorithm for Multimodal Real Function Optimization . In Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2012) ISBN 978-989-8565-33-4, pages 158-163. DOI: 10.5220/0004114401580163
in Bibtex Style
@conference{ecta12,
author={Jose M. Chaquet and Enrique J. Carmona},
title={A Grid-based Genetic Algorithm for Multimodal Real Function Optimization},
booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2012)},
year={2012},
pages={158-163},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004114401580163},
isbn={978-989-8565-33-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2012)
TI - A Grid-based Genetic Algorithm for Multimodal Real Function Optimization
SN - 978-989-8565-33-4
AU - M. Chaquet J.
AU - J. Carmona E.
PY - 2012
SP - 158
EP - 163
DO - 10.5220/0004114401580163