Zimmermann Method" (IZM):
Step 1. for solving (2.1), take values
mipb
i
,...,1,0;and
0
, from the DM.
Step 2. Solve (2.5) for obtaining the optimal (x
*
,
*
).
Step 3. If problem (2.5) does not have any feasible
solution; Stop. If it has AOS, then go to step 4. Else,
z
*
= cx
*
is the best value for z. Stop.
Step 4. Solve the following LP problem:
*
*
max
.. (1 )
() (1 ) 1
0.
ii i
z
st b p
bpi ,,m
cx
cx
Ax
x
(5.1)
If problem (4.2) is unbounded, stop. Let x
**
be the
optimal solution of (4.2). If the set of all AOS is not
singleton go to Step 5. Else, Stop.
Step 5. (Efficiency, Guu and Wu, 1999) Solve:
0
**
**
max
. . ( ) ( ) 0,1,2,...,
0.
m
i
i
ii
i
tA A i m
xx
cx cx
x
REFERENCES
Bellman, R. E. and Zadeh L. A., 1970.Decision Making in
a Fuzzy Environment, Management Science 17, 141-
164.
Chanas, S., 1983. The use of Parametric Programming in
Fuzzy Linear Programming, Fuzzy Sets and Systems,
11, 243-251.
Guu, S. M. and Wu, Y. K., 1999. Two Phase Approach for
Solving the Fuzzy Linear Programming Problems,
Fuzzy Sets and Systems, 107, 191-195.
Rosenfeld, A., 1994. Fuzzy plane geometry:
triangles,Pattern Recognition Letters, 15, 1261-1264.
Safi M. R., Maleki, H. R. and Zaeimazad, E., 2007.A Note
on Zimmermann Method for Solving Fuzzy Linear
Programming Problem,Iranian Journal of Fuzzy
Systems, vol. 4, no. 2, 31-45
Safi M. R., Maleki, H. R. and Zaeimazad, E., 2007.A
Geometric Approach for Solving Fuzzy Linear
Programming Problems,Fuzzy Optimization and
Decision Making, 6, 315-336.
Tanaka H., Okuda, T.and Asai, K., 1974. On fuzzy
mathematical Programming, Journal of cybernetics
3(4), 37-46.
Verdegay, J. L., 1982. Fuzzy Mathematical Programming,
in: M.M. Gupta and E. Sanchez, Eds., Fuzzy
Information and Decision Processes, North-Holland,
Amsterdam, 231-236.
Zimmermann, H. J., 1976. Description and Optimization
of Fuzzy Systems,International Journal of General
Systems, 2, 209- 215.
IJCCI2012-InternationalJointConferenceonComputationalIntelligence
438