results confirm that the Firefly algorithm is powerful
and efficient tool for identification of the parameters
in the bioprocess model parameter optimization
problem.
ACKNOWLEDGEMENTS
The investigations are partially supported by the
Bulgarian National Science Fund, Grants DID 02/29
and DMU 02/4.
REFERENCES
Apostolopoulos, T. and Vlachos, A., (2011). Application
of the Firefly Algorithm for Solving the Economic
Emissions Load Dispatch Problem. International
Journal of Combinatorics, Article ID 523806.
Akpinar, S. and Bayhan, G. M., (2011). A Hybrid Genetic
Aalgorithm for Mixed Model Assembly Line
Balancing Problem with Parallel Workstations and
Zoning Constraints. Engineering Applications of
Artificial Intelligence, 24(3), 449-457.
Arndt, M. and Hitzmann, B., (2001). Feed
Forward/feedback Control of Glucose Concentration
during Cultivation of Escherichia coli. 8th IFAC Int
Conf on Comp Appl in Biotechn, Canada, 425-429.
Chai-ead, N., Aungkulanon, P., Luangpaiboon, P., (2011).
Bees and firefly algorithms for noisy non-linear
optimisation problems. Prof. Int. Multiconference of
Engineers and Computer Scientists, 2, 1449-1454.
Silva, F., Sánchez Pérez, J. M., Gómez Pulido, J. A.,
Vega-Rodríguez, M. A., (2009). AlineaGA - A
Genetic Algorithm with Local Search Optimization for
Multiple Sequence Alignment. Applied Intelligence,
32(2), Springer, Berlin Heidelberg, 164-172.
Goldberg, D. E., (2006). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley
Longman, London.
Holland, J. H., (1992). Adaptation in Natural and
Artificial Systems (2nd ed.). Cambridge, MIT Press.
Jiang, L., Ouyang, Q., Tu, Y., (2010). Quantitative
Modeling of Escherichia coli Chemotactic Motion in
Environments Varying in Space and Time. PLoS
Comput Biol, 6(4), e1000735. doi:10.1371/
journal.pcbi.1000735.
Karelina, T. A., Ma, H., Goryanin, I., Demin, O. V.,
(2011). EI of the Phosphotransferase System of
Escherichia coli: Mathematical Modeling Approach to
Analysis of Its Kinetic Properties. J of Biophysics,
Article ID 579402, doi:10.1155/2011/579402.
Nasiri, B. and Meybodi, M. R., (2012). Speciation-based
firefly algorithm for optimization in dynamic
environments. Int J Artificial Intelligence, 8(S12),
118-132.
Opalka, N., Brown, J., Lane, W. J., Twist, K.-A. F.,
Landick, R., Asturias, F. J., Darst, S. A., (2010).
Complete Structural Model of Escherichia coli RNA
Polymerase from a Hybrid Approach. PLoS Biol, 8(9),
e1000483. doi:10.1371/journal.pbio.1000483.
Paplinski, J. P., (2010). The Genetic Algorithm with
Simplex Crossover for Identification of Time Delays.
Intelligent Information Systems, 337-346.
Petersen, C. M., Rifai, H. S., Villarreal, G. C., Stein, R.,
(2011). Modeling Escherichia coli and Its Sources in
an Urban Bayou with Hydrologic Simulation Program
-- FORTRAN, Journal of Environmental Engineering.
137(6), 487-503.
Roeva, O., (2008). Parameter Estimation of a Monod-type
Model based on Genetic Algorithms and Sensitivity
Analysis. LNCS, Springer-Verlag Berlin Heidelberg,
4818, 601-608.
Roeva, O., Kosev, K., Trenkova, T., (2010). A modified
multi-population genetic algorithm for parameter
identification of cultivation process models. IJCCI
(ICEC) 2010, Valencia, Spain, 348-351.
Skandamis, P. N. and Nychas, G. E., (2000). Development
and Evaluation of a Model Predicting the Survival of
Escherichia coli O157:H7 NCTC 12900 in
Homemade Eggplant Salad at Various Temperatures,
pHs, and Oregano Essential Oil Concentrations. AEM,
66(4), 1646-1653.
Syam, W. P. and Al-Harkan, I. M., (2010). Comparison of
Three Meta Heuristics to Optimize Hybrid Flow Shop
Scheduling Problem with Parallel Machines. WASET,
62, 271-278.
Tahouni, N., Smith, R., Panjeshahi, M. H., (2010).
Comparison of Stochastic Methods with Respect to
Performance and Reliability of Low-temperature Gas
Separation Processes. The Canadian Journal of
Chemical Engineering, 88(2), 256-267.
Yang, X. S., (2008). Nature-Inspired Meta-Heuristic
Algorithms, Luniver Press, Beckington, UK.
Yang, X. S., (2009). Firefly algorithm for multimodal
optimization, LNCS, Springer-Verlag Berlin
Heidelberg, 5792, 169-178.
Yang, X. S., (2010a). Firefly algorithm, stochastic test
functions and design optimisation, International
Journal of Bio-Inspired Computation, 2(2), 78-84.
Yang, X. S., (2010b). Firefly algorithm, Levy flights and
global optimization, Research and Development in
Intelligent Systems XXVI, Springer, London, UK, 209-
218.
Yousif, A., Abdullah, A. H., Nor, S. M., Abdelaziz, A. A.,
(2011). Scheduling Jobs on Grid Computing Using
Firefly Algorithm, Journal of Theoretical and Applied
Information Technology, 33(2), 155-164.
GeneticAlgorithmsandFireflyAlgorithmsforNon-linearBioprocessModelParametersIdentification
169