Table 3: IR effectiveness (% change) over 63 queries.
Strategies MAP P@10 P@20
Baseline (BM25) 23.96 41.9 35.00
I
Expert
29.55 (+23.33) 45.08 (+7.59) 39.92 (+14.06)
I
MeSH
24.73 (+3.21) 41.27 (-1.50) 35.87 (+2.49)
I
M G B
24.96 (+4.17) 42.77(+2.08) 36.08 (+3.09)
I
O
M G B
28.17 (+17.57) 44.33 (+5.80) 38.17 (+10.86)
and MeSH ontology which highlighted an improve-
ment in the performances of the information retrieval
system, in terms of both recall and precision metrics.
As work in progress, we focus on enrichment of mul-
tilingual ontologies by means of inter-lingual associ-
ation rules between terms introduced in (Latiri et al.,
2010).
ACKNOWLEDGEMENTS
This work was partially supported by the French-
Tunisian project CMCU-UTIQUE 11G1417.
REFERENCES
Agrawal, R. and Skirant, R. (1994). Fast algorithms for
mining association rules. In Proceedings of the 20
th
International Conference on Very Large Databases
(VLDB 1994), pages 478–499, Santiago, Chile.
Amirouche, F. B., Boughanem, M., and Tamine, L. (2008).
Exploiting association rules and ontology for semantic
document indexing. In Proceedings of the 12
th
Inter-
national Conference on Information Processing and
Management of Uncertainty in Knowledge-based Sys-
tems (IPMU’08), pages 464–472, Malaga, Espagne.
Andreasen, T., Bulskov, H., Jensen, P., and Lassen, T.
(2009). Conceptual indexing of text using ontologies
and lexical resources. In Proccedings of the 8
th
In-
ternational Conference on Flexible Query Answering
Systems, FQAS 2009, volume 5822 of LNCS, pages
323–332, Roskilde, Denmark. Springer.
Balc´azar, J. L. (2010). Redundancy, deduction schemes,
and minimum-size bases for association rules. Logical
Methods in Computer Science, 6(2):1–33.
Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., and
Lakhal, L. (2000). Mining minimal non-redundant as-
sociation rules using frequent closed itemsets. In Pro-
ceedings of the 1
st
International Conference on Com-
putational Logic, volume 1861 of LNAI, pages 972–
986, London, UK. Springer.
Baziz, M., Boughanem, M., Aussenac-Gilles, N., and
Chrisment, C. (2005). Semantic cores for represent-
ing documents in IR. In Proceedings of the 2005 ACM
Symposium on Applied Computing, SAC’05, pages
1011–1017, New York, USA. ACM Press.
Ben Yahia, S., Gasmi, G., and Nguifo, E. M. (2009). A
new generic basis of factual and implicative associa-
tion rules. Intelligent Data Analysis, 13(4):633–656.
Bendaoud, R., Napoli, A., and Toussaint, Y. (2008). Formal
concept analysis: A unified framework for building
and refining ontologies. In Proceedings of 16
th
Inter-
national Conference on the Knowledge Engineering:
Practice and Patterns (EKAW 2008), volume 5268 of
LNCS, pages 156–171, Acitrezza, Italy. Springer.
Benz, D., Hotho, A., and Stumme, G. (2010). Semantics
made by you and me: Self-emerging ontologies can
capture the diversity of shared knowledge. In Pro-
ceedings of the 2
nd
Web Science Conference (Web-
Sci10), Raleigh, NC, USA.
Cimiano, P., Hotho, A., Stumme, G., and Tane, J. (2004).
Conceptual knowledge processing with formal con-
cept analysis and ontologies. In Proceedings of the
second International Conference on Formal Concept
Analysis, ICFCA 2004, pages 189–207, Sydney, Aus-
tralia.
Di-Jorio, L., Bringay, S., Fiot, C., Laurent, A., and Teis-
seire, M. (2008). Sequential patterns for maintaining
ontologies over time. In Proceedings of the Interna-
tional Conference On the Move to Meaningful Inter-
net Systems, OTM 2008, volume 5332 of LNCS, pages
1385–1403, Monterrey, Mexico. Springer.
D´ıaz-Galiano, M. C., Garc´ıa-Cumbreras, M. A., Mart´ın-
Valdivia, M. T., Montejo-R´aez, A., and na L´opez, L.
A. U. (2008). Integrating MeSH Ontology to Improve
Medical Information Retrieval. In Proceedings of the
8
th
Workshop of the Cross-Language Evaluation Fo-
rum, CLEF 2007, Advances in Multilingual and Mul-
timodal Information Retrieval, volume 5152 of LNCS,
pages 601–606, Budapest, Hungary. Springer.
Dinh, D. and Tamine, L. (2011). Combining global and lo-
cal semantic contexts for improving biomedical infor-
mation retrieval. In Proceedings of the 33
rd
European
Conference on IR Research, ECIR 2011, volume 6611
of LNCS, pages 375–386, Dublin, Ireland. Springer.
Faatz, A. and Steinmetz, R. (2002). Ontology enrichment
with texts from the www. In Proceedings of the
2
nd
ECML/PKDD-Workshop on Semantic Web Min-
ing, pages 20–34, Helsinki, Finland.
Ganter, B. and Wille, R. (1999). Formal Concept Analysis.
Springer.
Jones, K. S., Walker, S., and Robertson, S. E. (2000). A
probabilistic model of information retrieval: develop-
ment and comparative experiments. Information Pro-
cessing and Management, 36(6):779–840.
Latiri, C., Haddad, H., and Hamrouni, T. (2012). To-
KEOD2012-InternationalConferenceonKnowledgeEngineeringandOntologyDevelopment
64