Calinski, R. and Harabasz, J. (1974). A dendrite method for
cluster analysis. Communications in Statistics, 3:1–
27.
Celeux, G. and Govaert, G. (1992). A classification EM
algorithm for clustering and two stochastic versions.
Computational Statistics and Data Analysis, 14:315–
332.
Chung, F. R. K. (1997). Spectral Graph Theory. AMS
Press, Providence, R.I.
Dasgupta, S. and Ng, V. (2009). Mine the easy, classify the
hard: a semi-supervised approach to automatic senti-
ment classification. In ACL-IJCNLP 2009: Proceed-
ings of the Main Conference, pages 701–709.
Dhillon, I., Kogan, J., and Nicholas, C. (2003). Feature
selection and document clustering. In Berry, M., ed-
itor, A Comprehensive Survey of Text Mining, pages
73–100. Springer, Berlin Heildelberg New York.
Dhillon, I. S., Guan, Y., and Kulis, B. (2004). Kernel k-
means, spectral clustering and normalized cuts. In
Proceedings of the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing (KDD), pages 551–556.
Dhillon, I. S. and Modha, D. S. (2001). Concept decom-
positions for large sparse text data using clustering.
Machine Learning, 42(1):143–175. Also appears as
IBM Research Report RJ 10147, July 1999.
Ding, C., He, X., and Simon, H. D. (2005). On the equiv-
alence of nonnegative matrix factorization and spec-
tral clustering. In Proceedings of the fifth SIAM inter-
national conference on data mining, volume 4, pages
606–610.
Dudoit, S. and Fridlyand, J. (2002). A prediction-based re-
sampling method for estimating the number of clus-
ters in a dataset. Genome Biol., 3(7).
Dunn, J. C. (1974). Well Separated Clusters and Optimal
Fuzzy Partitions. Journal on Cybernetics, 4:95–104.
Filippone, M., Camastra, F., Masulli, F., and Rovetta, S.
(2008). A survey of kernel and spectral methods for
clustering. Pattern Recognition, 41(1):176–190.
Forgy, E. W. (1965). Cluster analysis of multivariate data
- efficiency vs interpretability of classifications. Bio-
metrics, 21(3):768–769.
Fortunato, S. (2010). Community detection in graphs. Phys.
Rep., 486(3-5):75–174.
Gordon, A. D.(1994). Identifying genuine clusters in a clas-
sification. Computational Statistics and Data Analy-
sis, 18:561–581.
Gordon, A. D. (1999). Classification. Chapman and Hall,
CRC, Boca Raton, FL.
Hartigan, J. A. (1985). Statistical theory in clustering. J.
Classification, 2:63–76.
Hubert, L. and Schultz, J. (1974). Quadratic assignment as
a general data-analysis strategy. Br. J. Math. Statist.
Psychol., 76:190–241.
Jain, A. and Dubes, R. (1988). Algorithms for Clustering
Data. Englewood Cliffs, Prentice-Hall, New Jersey.
Jain, A. K. and Moreau, J. V. (1987). Bootstrap technique in
cluster analysis. Pattern Recognition, 20(5):547–568.
Kogan, J., Nicholas, C., and Volkovich, V. (2003a). Text
mining with hybrid clustering schemes. In M.W.Berry
and Pottenger, W., editors, Proceedings of the Work-
shop on Text Mining (held in conjunction with the
Third SIAM International Conference on Data Min-
ing), pages 5–16.
Kogan, J., Nicholas, C., and Volkovich, V. (Novem-
ber/December 2003b). Text mining with information–
theoretical clustering. Computing in Science & Engi-
neering, pages 52–59.
Kogan, J., Teboulle, M., and Nicholas, C. (2003c). Opti-
mization approach to generating families of k–means
like algorithms. In Dhillon, I. and Kogan, J., editors,
Proceedings of the Workshop on Clustering High Di-
mensional Data and its Applications (held in conjunc-
tion with the Third SIAM International Conference on
Data Mining).
Krzanowski, W. and Lai, Y. (1985). A criterion for deter-
mining the number of groups in a dataset using sum
of squares clustering. Biometrics, 44:23–34.
Kulis, B., Basu, S., Dhillon, I., and Mooney, R. J. (2005).
Semi-supervised graph clustering: A kernel approach.
In Proceedings of the 22nd International Conference
on Machine Learning, pages 457–464, Bonn, Ger-
many.
Levine, E. and Domany, E. (2001). Resampling method
for unsupervised estimation of cluster validity. Neural
Computation, 13:2573–2593.
Liu, X., Yu, S., Moreau, Y., Moor, B. D., Glanzel, W., and
Janssens, F. A. L. (2009). Hybrid clustering of text
mining and bibliometrics applied to journal sets. In
SDM’09, pages 49–60.
Luxburg, U. V. (2007). A tutorial on spectral clustering.
Statistics and Computing, 17(4):395–416.
MacQueen, J. B. (1967). Some methods for classification
and analysis of multivariate observations. In Pro-
ceedings of 5-th Berkeley Symposium on Mathemat-
ical Statistics and Probability, volume 1, pages 281–
297. Berkeley, University of California Press.
McLachlan, G. J. and Peel, D. (2000). Finite Mixure Mod-
els. Wiley.
Milligan, G. and Cooper, M. (1985). An examination of
procedures for determining the number of clusters in
a data set. Psychometrika, 50:159–179.
Mohar, B. (1997). Some applications of Laplace eigen-
values of graphs. G. Hahn and G. Sabidussi (Eds.),
Graph Symmetry: Algebraic Methods and Applica-
tions, Springer.
Mufti, G. B., Bertrand, P., and Moubarki, E. (2005). Deter-
mining the number of groups from measures of cluster
validity. In Proceedings of ASMDA 2005, pages 404–
414.
Nascimento, M. and Carvalho, A. D. (2011). Spectral meth-
ods for graph clustering – a survey. European Journal
Of Operational Research, 2116(2):221–231.
Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). On spectral
clustering: analysis and an algorithm. In Advances
in Neural Information Processing Systems 14 (NIPS
2001), pages 849–856.
Roth, V., Lange, V., Braun, M., and J., B. (2002). A resam-
pling approach to cluster validation. In COMPSTAT,
available at http://www.cs.uni-bonn.De/
˜
braunm.
ModelSelectionandStabilityinSpectralClustering
33