Polyhedron. A prototype is being developed using
the library CGAL (http://www.cgal.org). Some
simplification will be undertaken regarding the 9-IM
computation of each topological relationship in
order to reduce the calculation volume. Future work
on topological relation qualification will be mainly
focus on semantic qualification and inferences
(Boley et al., 2001) and depicted in the next
generation of SWRL topologic rule. This can also be
done by a composition of relations, meet∘
contains⊑Disjoint
.
meet (?a, ?b) ^ contains(?a, ?c) disjoint (?a, ?c)
(4)
REFERENCES
Abdul-Rahman, A., Pilouk, M., 2007. Spatial data
modelling for 3D GIS. Springer Publishing Company.
Antoniou, G., Harmelen, F., 2009. Web ontology
language: OWL. Handbook on ontologies, pp. 91--
110.
Boley, H., Tabet, S., Wagner, G., 2001. Design rationale
of RuleML: A markup language for semantic web
rules, pp. 381--402.
Borrmann, A., Schraufstetter, S., Rank, E., 2009.
Implementing metric operators of a spatial query
language for 3D building models: octree and B-Rep
approaches. Journal of Computing in Civil
Engineering, Volume 23, p. 34.
Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D.,
2001. Reasoning in expressive description logics.
Handbook of Automated Reasoning, Volume 2, pp.
1581--1634.
Consortium, O. G., 2012. OGC Reference Model (ORM).
[Online], Available at: http://www.opengeospatial.org/
standards/orm [Accessed 14 04 2012].
Egenhofer, M. J., 2010. Qualitative Spatial-Relation
Reasoning for Design, NSF International Workshop
on Studying Visual and Spatial Reasoning for Design
Creativity, Aixen-Provence.
Egenhofer, M. J., Herring, J., 1990. A mathematical
framework for the definition of topological
relationships. In: Fourth International Symposium on
Spatial Data Handling. pp. 803--813.
Ellul, C., Haklay, M. M., 2009. Using a B-rep structure to
query 9-intersection topological relationships in 3D
GIS--reviewing the approach and improving
performance. 3D Geo-information Sciences, pp. 127--
151.
Galton, A., 2009. Spatial and temporal knowledge
representation. Earth Science Informatics, Volume 2,
pp. 169--187.
Granados, M., Hachenberger, P., Hert, S., Kettner, L.,
Mehlhorn, K., Seel, M., 2003. Boolean operations on
3D selective Nef complexes: Data structure,
algorithms, and implementation. Algorithms-ESA
2003, pp. 654--666.
Gruber, T. R., 1993. A translation approach to portable
ontology specifications. Knowledge acquisition,
Volume 5, pp. 199--220.
Horrocks, I. et al., 2004. SWRL: A semantic web rule
language combining OWL and RuleML. W3C
Member submission, Volume 21, p. 79.
Karmacharya, A., Cruz, C., Boochs, F. & Marzani, F.,
2011. Integration of Spatial processing and knowledge
Processing through the Semantic Web Stack.
GeoSpatial Semantics, pp. 200--216.
Lienhardt, P., 1991. Topological models for boundary
representation: a comparison with n-dimensional
generalized maps. Computer-Aided Design, Volume
23, pp. 59--82.
Meagher, D., 1982. Geometric modeling using octree
encoding. Computer Graphics and Image Processing,
Volume 19, pp. 129--147.
Nef, W., 1978. Beitrage zur Theorie der Polyeder: mit
Anwendungen in der Computergraphik. Lang.
Perry, M. & Herring, J., 2010. GeoSPARQL--A
geographic query language for RDF data. A proposal
for an OGC Draft Candidate Standard. Open
Geospatial Consortium, Volume 27.
Randell, D. A., Cui, Z., Cohn, A. G., 1992. A spatial logic
based on regions and connection. KR, Volume 92, pp.
165--176.
Sterling, L., Shapiro, E., Eytan, M., 1986. The art of
Prolog. Wiley Online Library.
Stocker, M., Sirin, E., 2009. Pelletspatial: A hybrid rcc-8
and rdf/owl reasoning and query engine. Proc. 6
th
International Workshop OWL: Experiences and
Directions (OWLED), Volume 529.
From9-IMTopologicalOperatorstoQualitativeSpatialRelationsusing3DSelectiveNefComplexesandLogicRulesfor
Bodies
213