evaluate the relative relevance of an item to the set
of the user’s needs (optimal set) and the needs
covered by the retrieved items set.
REFERENCES
Agrawal, R. & Gollapudi, S., 2009. Diversifying Search
Results. Barcelona, WSDM.
Ahmed, A. et al., 2011. Scalable distributed inference of
dynamic user interests for behavioral targeting. San
Diego, California, USA, ACM, pp. 114-122.
Blei, D. M., 2011. Introduction to probabilistic topic
models. Communications of the ACM, December,
54(12), pp. 77-78.
Blei, D. M., Ng, A. Y. & Jordan, M. I., 2003. Latent
dirichlet allocation. The Journal of Machine Learning
Research, 1 March, Volume 3, pp. 993-1022.
Broder, A. a. F. M. a. J. V. a. R. L., 2007. A semantic
approach to contextual advertising. Amsterdam, The
Netherlands, ACM, pp. 559-566.
Broder, A. & Josifovki, V., 2011. Introduction to
computational advertising (MS&E 239).
Stanford(California): Stanford University.
Chakrabarti, D., Agarwal, D. & Josifovski, V., 2008.
Contextual advertising by combining relevance with
click feedback. Beijing, China, ACM.
Garcia-Molina, H., Koutrika, G. & Parameswaran, A.,
2011. Information seek-ing: convergence of search,
recommendations and advertising. Communications of
the ACM, 54(11), pp. 121-130.
Griffiths, T. L. & Steyvers, M., 2002. A probabilistic
approach to semantic representation. Fairfax,
Virginia, s.n., pp. 381-386.
Heinrich, G., 2009. Parameter estimation for text analysis,
Darmstadt, Germany: Fraunhofer IGD.
Heinrich, G., 2009. Parameter estimation for text analysis,
Darmstadt, Germany: Fraunhofer IGD.
Herlocker, J. L., Konstan, J. A., Terveen, L. G. & Riedl, J.
T., 2004. Evaluating collaborative filtering
recommender systems. ACM Transactions on
Information Systems, January, 1(22), pp. 5-53.
Manning, C. D., Raghavan, P. & Schtze, H., 2008.
Introduction to Information Retrieval. New York, NY,
USA: Cambridge University Press.
Nikulin, M., 2011. Hellinger distance - Encyclopedia of
Mathematics. [Online] Available at: http://
www.encyclopediaofmath.org/index.php?title=Helling
er_distance&oldid=16453 [Accessed 22 April 2012].
Nikulin, M., 2011. Hellinger distance - Encyclopedia of
Mathematics. [Online] Available at:
http://www.encyclopediaofmath.org/index.php?title=H
ellinger_distance&oldid=16453 [Accessed 22 April
2012].
Phan, X.-H. & Nguyen, C.-T., 2008. JGibbLDA: A Java
implementation of latent Dirichlet allocation (LDA).
[Online] Available at: http://jgibblda.sourceforge.net/
[Accessed 22 April 2012].
Ribeiro-Neto, B., Cristo, M., Golgher, P. B. & Silva de
Moura, E., 2005. Impedance coupling in content-
targeted advertising. Salvador, Brazil, ACM, pp. 496-
503.
Santos, R. L., Macdonald, C. & Ounis, I., 2010. Exploiting
query reformulations for web search result
diversification. Raleigh, North Carolina, USA,
ACM,
pp. 881-890.
The Economist, 2010. The data deluge. [Online] Available
at: http://www.economist.com/node/15579717 [Acces-
sed 22 April 2012].
Witten, I. H., Frank, E. & Hall, M. A., 2011. Data Mining:
Practical Machine Learning Tools and Techniques.
3rd ed. San Francisco(CA): Morgan Kaufmann
Publishers Inc..
Yih, W.-t., Goodman, J. & Carvalho, V. R., 2006. Finding
advertising keywords on web pages. Edinburgh,
Scotland, ACM, pp. 213-222.
Zhang, Y., Surendran, A. C., Platt, J. C. & Narasimhan,
M., 2008. Learning from multi-topic web documents
for contextual advertisement. Las Vegas, Nevada,
USA, ACM, pp. 1051-1059.
Ziegler, C.-N., McNee, S. M., Konstan, J. A. & Lausen,
G., 2005. Improving recommendation lists through
topic diversification. Chiba, Japan, ACM, pp. 22-32.
KDIR2012-InternationalConferenceonKnowledgeDiscoveryandInformationRetrieval
94