Managing Model Fidelity for Efficient Optimization of Antennas using Variable-resolution Electromagnetic Simulations

Slawomir Koziel, Stanislav Ogurtsov, Leifur Leifsson

2012

Abstract

Electromagnetic (EM) simulation has become an important tool in the design of contemporary antenna structures. However, accurate simulations of realistic antenna models are expensive and therefore design automation by employing EM solver within an optimization loop may be prohibitive because of its high computational cost. Efficient EM-driven antenna design can be performed using surrogate-based optimization (SBO). A generic approach to construct surrogate models of antennas involves the use of coarse-discretization EM simulations (low-fidelity models). A proper selection of the surrogate model fidelity is a key factor that influences both the performance of the design optimization process and its computational cost. Despite its importance, this issue has not yet been investigated in the literature. Here, we focus on a problem of proper surrogate model management. More specifically, we carry out a numerical study that aims at finding a trade-off between the design cost and reliability of the SBO algorithms. Our considerations are illustrated using several antenna design cases. Furthermore, we demonstrate that the use of multiple models of different fidelity may be beneficial to reduce the design cost while maintaining the robustness of the optimization process.

References

  1. Alexandrov, N. M., Dennis, J. E., Lewis, R. M., Torczon, V., 1998. A trust region framework for managing use of approximation models in optimization. Struct. Multidisciplinary Optim., vol. 15, no. 1, pp. 16-23.
  2. Amari, S., LeDrew, C., Menzel, W., 2006. Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microwave Theory Tech., vol. 54, no. 5, pp. 2153-2159.
  3. Bandler, J. W., Cheng, Q. S., Dakroury, S. A., Mohamed, A. S., Bakr, M. H., Madsen, K., Søndergaard, J., 2004. Space mapping: the state of the art,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 337-361.
  4. Buhmann, M. D., Ablowitz, M. J., 2003. Radial Basis Functions: Theory and Implementations, Cambridge University.
  5. Chen, Z.N., 2008. Wideband microstrip antennas with sandwich substrate. IET Microw. Ant. Prop., vol. 2, no. 6, pp. 538-546.
  6. Cheng, Q. S., Rautio, J. C., Bandler, J. W., Koziel, S., 2010. Progress in simulator-based tuning-the art of tuning space mapping. IEEE Microwave Magazine, vol. 11, no. 4, pp. 96-110.
  7. Conn, A. R., Gould, N. I. M., Toint, P. L., 2000. Trust Region Methods, MPS-SIAM Series on Optimization.
  8. Couckuyt, I., Declercq, F., Dhaene, T., Rogier, H., Knockaert, L., 2010. Surrogate-based infill optimization applied to electromagnetic problems. Int. J. RF and Microwave CAE, vol. 20, No. 5, pp. 492- 501.
  9. CST Microwave Studio, 2011. CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany.
  10. Echeverria, D., Hemker, P. W., 2005. Space mapping and defect correction. CMAM The International Mathematical Journal Computational Methods in Applied Mathematics. vol. 5, no. 2, pp. 107-136.
  11. Forrester, A. I. J., Keane, A. J., 2009. Recent advances in surrogate-based optimization, Prog. in Aerospace Sciences, vol. 45, no. 1-3, pp. 50-79.
  12. Halehdar, A., Thiel, D. V., Lewis, A., Randall, M., 2009. Multiobjective optimization of small meander wire dipole antennas in a fixed area using ant colony system. Int. J. RF and Microwave CAE, vol. 19, No. 5, pp. 592-597.
  13. Haupt, R. L., 2007. Antenna design with a mixed integer genetic algorithm. IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 577-582.
  14. HFSS, release 13.0, 2010, ANSYS, http://www.ansoft.com/products/hf/hfss/
  15. Jiao, J.-J., Zhao, G., Zhang, F.-S., Yuan, H.-W., Jiao, Y.- C., 2007. A broadband CPW-fed T-shape slot antenna,” Progress in Electromagnetics Research, vol. 76, pp. 237-242.
  16. Jin, N., Rahmat-Samii, Y., 2005. Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3459-3468.
  17. Jin, N., Rahmat-Samii, Y., 2008. Analysis and particle swarm optimization of correlator antenna arrays for radio astronomy applications,” IEEE Trans. Antennas Propag., vol. 56, no. 5, pp. 1269-1279.
  18. Kabir, H., Wang, Y., Yu, M., Zhang, Q.J., 2008. Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microwave Theory Tech., vol. 56, no. 4, pp. 867-879.
  19. Kerkhoff, A. J. and Ling, H., 2007. Design of a bandnotched planar monopole antenna using genetic algorithm optimization. IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 604-610.
  20. Koziel, S., Bandler, J. W., Madsen, K., 2006. A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech., vol. 54, no. 10, pp. 3721-3730.
  21. Koziel, S., Cheng, Q. S., Bandler, J. W., 2008. Space mapping. IEEE Microwave Magazine, vol. 9, no. 6, pp. 105-122.
  22. Koziel, S., Bandler, J.W., Madsen, K., 2009. Space mapping with adaptive response correction for microwave design optimization. IEEE Trans. Microwave Theory Tech., vol. 57, no. 2, pp. 478-486.
  23. Koziel, S., 2010a. Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microwave Theory and Tech., vol. 58, no. 11, pp. 2829-2837.
  24. Koziel,S.,2010b. Adaptively adjusted design specifications for efficient optimization of microwave structures, Progress in Electromagnetic Research B (PIER B), vol. 21, pp. 219-234.
  25. Koziel, S., Echeverría-Ciaurri, D., Leifsson, L., 2011. Surrogate-based methods, in S. Koziel and X. S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence, Springer-Verlag, pp. 33-60.
  26. Koziel, S., Ogurtsov, S., 2011. Simulation-driven design in microwave engineering: application case studies, in Computational Optimization and Application in Engineering and Industry, X.-S. Yang and S. Koziel, eds., Springer-Verlag.
  27. Meng, J., Xia, L., 2007. Support-vector regression model for millimeter wave transition. Int. J. Infrared and Milimeter Waves, vol. 28, no. 5, pp. 413-421.
  28. Pantoja, M. F., Meincke, P., Bretones, A. R., 2007. A hybrid genetic algorithm space-mapping tool for the optimization of antennas. IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 777-781.
  29. Petosa, A., 2007. Dielectric Resonator Antenna Handbook, Artech House.
  30. Rautio, J. C., 2008. Perfectly calibrated internal ports in EM analysis of planar circuits. IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, pp. 1373-1376.
  31. Rayas-Sánchez, J. E., 2004. EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 420-435.
  32. Schantz, H., 2005. The art and science of ultrawideband antennas, Artech House.
  33. Simpson, T. W., Peplinski, J., Koch, P. N., Allen, J. K., 2001. Metamodels for computer-based engineering design: survey and recommendations,” Engineering with Computers, vol.17, no. 2, pp. 129-150.
  34. Smola, A.J., Schölkopf, B., 2004. A tutorial on support vector regression. Statistics and Computing, vol. 14, no. 3, pp. 199-222.
  35. Swanson, D., Macchiarella, G., 2007. Microwave filter design by synthesis and optimization. IEEE Microwave Magazine, vol. 8, no. 2, pp. 55-69.
  36. Wi, S.-H., Lee, Y.-S., Yook, J.-G., 2007. Wideband Microstrip Patch Antenna with U-shaped Parasitic Elements. IEEE Trans. Antennas Propagat., vol. 55, no. 4, pp. 1196-1199.
Download


Paper Citation


in Harvard Style

Koziel S., Ogurtsov S. and Leifsson L. (2012). Managing Model Fidelity for Efficient Optimization of Antennas using Variable-resolution Electromagnetic Simulations . In Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2012) ISBN 978-989-8565-20-4, pages 457-465. DOI: 10.5220/0004147404570465


in Bibtex Style

@conference{sddom12,
author={Slawomir Koziel and Stanislav Ogurtsov and Leifur Leifsson},
title={Managing Model Fidelity for Efficient Optimization of Antennas using Variable-resolution Electromagnetic Simulations},
booktitle={Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2012)},
year={2012},
pages={457-465},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004147404570465},
isbn={978-989-8565-20-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2012)
TI - Managing Model Fidelity for Efficient Optimization of Antennas using Variable-resolution Electromagnetic Simulations
SN - 978-989-8565-20-4
AU - Koziel S.
AU - Ogurtsov S.
AU - Leifsson L.
PY - 2012
SP - 457
EP - 465
DO - 10.5220/0004147404570465