X-FEM based Topological Optimization Method
Meisam Abdi, Ian Ashcroft, Ricky Wildman
2012
Abstract
This study presents a new algorithm for structural topological optimization by combining the Extended Finite Element Method (X-FEM) with an evolutionary optimization algorithm. Taking advantage of an isoline design approach for boundary representation in a fixed grid domain, X-FEM can be implemented to obtain more accurate results on the boundary during the optimization process. This approach can produce topologies with clear and smooth boundaries without using a remeshing or a moving mesh algorithm. Also, reanalysing the converged solutions in NASTRAN confirms the high accuracy of the proposed method.
References
- Allaire, G., Jouve, F., Toader, A. M., 2004. Structural optimisation using sensitivity analysis and a level set method, J. Comp. Phys., 194, pp. 363-393.
- Bendsøe, M. P. 1989. Optimal shape design as a material distribution problem. Struct. Optim. 1, pp. 193-202.
- Bendsøe, M. P. and Kikuchi, N., 1988. Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering, 71, pp. 197-224
- Dunning, P., Kim, H. A. and Mullineux, G., 2008. Error analysis of fixed grid formulation for boundary based structural optimisation. In: 7th ASMO UK / ISSMO conference on Engineering Design Optimisation, 7-8 July 2008, Bath, UK.
- Gerstenberger, A., Wall. W. A., 2008. An eXtended finite element method/Lagrange multiplier based approach for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, 197, pp.1699- 714.
- Huang, X., Xie, Y. M., 2009. Evolutionary Topology Optimisation of Continuum Structures, Wiley.
- Lee, D., Park, S., Shin, S., 2007. Node-wise topological shape optimum design for structural reinforced modeling of Michell-type concrete deep beams. J Solid Mech Mater Eng, 1(9), pp. 1085-96.
- Maute, K., Ramm, E., 1995. Adaptive topology optimisation. Struct Optim, 10, pp. 100-12.
- Miegroet, L. V., Duysinx, P., 2007. Stress concentration minimization of 2D filets using X-FEM and level set description. Structural and Multidisciplinary Optimisation, 33, pp. 425-38.
- Querin, O. M., Steven, G. P. and Xie, Y. M., 1988. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering Computations, 15 ( 8), pp. 1031-1048.
- Moës, N., Dolbow, J. and Belytschko, T., 1999. A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering. 46, pp. 131-150.
- Sigmund, O., 2001. A 99 line topology optimisation code written in Matlab. Struct Multidiscipl Optim, 21, pp. 120-127.
- Sukumar, N., Chopp, D. L., Moës, N. and Belytschko, T., 2001. Modeling Holes and Inclusions by Level Sets in the Extended Finite Element Method. Computer Methods in Applied Mechanics and Engineering, 190, pp. 6183-6200.
- Victoria, M., Marti, P., Querin, O. M., 2009. Topology design of two-dimensional continuum structures using isolines. Computer and Structures, 87, pp.101-109.
- Victoria, M., Querin, O. M., Marti, P., 2010. Topology design for multiple loading conditions of continuum structures using isolines and isosurfaces. Finite Elements in Analysis and Design, 46 , pp. 229-237.
- Wang, M. Y., Wang, X., Guo, D., 2003. A level set method for structural topology optimisation. Comput. Meth .Appl. Eng., 192, pp.227-46.
- Wei, P., Wang, M.Y., Xing, X., 2010. A study on X-FEM in continuum structural optimization using level set method. Computer-Aided Design, 42, pp. 708-719.
- Xie, Y. M. and Steven, G. P., 1993. A simple evolutionary procedure for structural optimization. Computers & Structures, 49, pp. 885-896.
- Yang, X. Y., Xie, Y. M., Steven, G. P., and Querin, O. M., 1999. Bidirectional evolutionary method for stiffness optimisation. AIAA J., 37(11), pp.1483-1488.
- Zhou, M., Rozvany, G. I. N., 1991. The COG algorithm, Part II: Topological, geometrical and general shape optimisation. Comp. Meth. Appl. Mech. Eng., 89, pp. 309-336.
Paper Citation
in Harvard Style
Abdi M., Ashcroft I. and Wildman R. (2012). X-FEM based Topological Optimization Method . In Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2012) ISBN 978-989-8565-20-4, pages 466-471. DOI: 10.5220/0004148404660471
in Bibtex Style
@conference{sddom12,
author={Meisam Abdi and Ian Ashcroft and Ricky Wildman},
title={X-FEM based Topological Optimization Method},
booktitle={Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2012)},
year={2012},
pages={466-471},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004148404660471},
isbn={978-989-8565-20-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SDDOM, (SIMULTECH 2012)
TI - X-FEM based Topological Optimization Method
SN - 978-989-8565-20-4
AU - Abdi M.
AU - Ashcroft I.
AU - Wildman R.
PY - 2012
SP - 466
EP - 471
DO - 10.5220/0004148404660471