A Comparison Study of Some Configurations of the Uninorm Morphological Edge Detector

Manuel González-Hidalgo, Sebastià Massanet, Arnau Mir, Daniel Ruiz-Aguilera

2012

Abstract

In this paper, we study the performance of the edge detector from the fuzzy mathematical morphology based on conjunctive uninorms. Several different pairs of uninorm and fuzzy implication (configurations) are considered in the fuzzy morphological gradient. The results are compared using an objective edge detection performance measure, the so-called Pratt’s figure of merit. To reinforce the analysis a K-means clustering algorithm has been applied to study the relation between the configurations and to determine which uninorm and implication have to be chosen to obtain an optimal edge detector. According to the analysis of the obtained results, the idempotent uninorm obtained using the classical negation, and its residual implication is the best configuration in this framework.

References

  1. BaczyÁski, M. and Jayaram, B. (2008). Fuzzy Implications, volume 231 of Studies in Fuzziness and Soft Computing. Springer, Berlin Heidelberg.
  2. Bloch, I. and Maˆitre, H. (1995). Fuzzy mathematical morphologies: a comparative study. Pattern Recognition, 28:1341-1387.
  3. Bowyer, K., Kranenburg, C., and Dougherty, S. (1999). Edge detector evaluation using empirical ROC curves. Computer Vision and Pattern Recognition, 1:354-359.
  4. Bustince, H., Barrenechea, E., Pagola, M., and Fernandez, J. (2009). Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets and Systems, 160(13):1819-1840.
  5. Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell., 8(6):679-698.
  6. De Baets, B. (1997). Fuzzy morphology: A logical approach. In Ayyub, B. M. and Gupta, M. M., editors, Uncertainty Analysis in Engineering and Science: Fuzzy Logic, Statistics, and Neural Network Approach, pages 53-68. Kluwer Academic Publishers, Norwell.
  7. De Baets, B. (2000). Generalized idempotence in fuzzy mathematical morphology. In Kerre, E. E. and Nachtegael, M., editors, Fuzzy techniques in image processing, number 52 in Studies in Fuzziness and Soft Computing, chapter 2, pages 58-75. PhysicaVerlag, New York.
  8. Fodor, J., Yager, R., and Rybalov, A. (1997). Structure of uninorms. Int. J. Uncertainty, Fuzziness, KnowledgeBased Systems, 5:411-427.
  9. González-Hidalgo, M., Massanet, S., and J.Torrens (2010). Discrete t-norms in a fuzzy mathematical morphology: Algebraic properties and experimental results. In Proceedings of WCCI-FUZZ-IEEE, pages 1194- 1201, Barcelona, Spain.
  10. González-Hidalgo, M., Massanet, S., and Mir, A. (2012). Determining the best pair of t-norm and implication in the morphological gradient. In Proceedings of XVI Congreso Espan˜ol sobre Tecnologías y Lógica Fuzzy (ESTYLF), pages 510-515, Valladolid, Spain. (In Spanish).
  11. González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., and Torrens, J. (2009a). Edge-images using a uninorm-based fuzzy mathematical morphology: Opening and closing. In Tavares, J. and Jorge, N., editors, Advances in Computational Vision and Medical Image Processing, number 13 in Computational Methods in Applied Sciences, chapter 8, pages 137- 157. Springer, Netherlands.
  12. González-Hidalgo, M., Mir-Torres, A., Ruiz-Aguilera, D., and Torrens, J. (2009b). Image analysis applications of morphological operators based on uninorms. In Proceedings of the IFSA-EUSFLAT 2009 Conference, pages 630-635, Lisbon, Portugal.
  13. Klement, E., Mesiar, R., and Pap, E. (2000). Triangular norms. Kluwer Academic Publishers, London.
  14. Kovesi, P. D. (2012). MATLAB and Octave functions for computer vision and image processing. Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia. Available from: http://www.csse.uwa.edu.au/ pk/research/matlabfns/.
  15. Massanet, S. and Torrens, J. (2011). On a new class of fuzzy implications: h-implications and generalizations. Information Sciences, 181(11):2111 - 2127.
  16. Medina-Carnicer, R., Mun˜oz-Salinas, R., Yeguas-Bolivar, E., and Diaz-Mas, L. (2011). A novel method to look for the hysteresis thresholds for the Canny edge detector. Pattern Recognition, 44(6):1201 - 1211.
  17. Nachtegael, M. and Kerre, E. (2000). Classical and fuzzy approaches towards mathematical morphology. In Kerre, E. E. and Nachtegael, M., editors, Fuzzy techniques in image processing, number 52 in Studies in Fuzziness and Soft Computing, chapter 1, pages 3-57. Physica-Verlag, New York.
  18. Papari, G. and Petkov, N. (2011). Edge and line oriented contour detection: State of the art. Image and Vision Computing, 29(2-3):79 - 103.
  19. Pratt, W. K. (2007). Digital Image Processing. WileyInterscience, 4 edition.
  20. Serra, J. (1982,1988). Image analysis and mathematical morphology, vols. 1, 2. Academic Press, London.
Download


Paper Citation


in Harvard Style

González-Hidalgo M., Massanet S., Mir A. and Ruiz-Aguilera D. (2012). A Comparison Study of Some Configurations of the Uninorm Morphological Edge Detector . In Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012) ISBN 978-989-8565-33-4, pages 410-419. DOI: 10.5220/0004148804100419


in Bibtex Style

@conference{fcta12,
author={Manuel González-Hidalgo and Sebastià Massanet and Arnau Mir and Daniel Ruiz-Aguilera},
title={A Comparison Study of Some Configurations of the Uninorm Morphological Edge Detector},
booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012)},
year={2012},
pages={410-419},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004148804100419},
isbn={978-989-8565-33-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012)
TI - A Comparison Study of Some Configurations of the Uninorm Morphological Edge Detector
SN - 978-989-8565-33-4
AU - González-Hidalgo M.
AU - Massanet S.
AU - Mir A.
AU - Ruiz-Aguilera D.
PY - 2012
SP - 410
EP - 419
DO - 10.5220/0004148804100419