Non-commutative Fuzzy Logic psMTL - An Alternative Proof for the Standard Completeness Theorem

Denisa Diaconescu

2012

Abstract

In (Jenei and Montagna, 2003) was proved that the non-commutative psMTL logic introduced in (Hájek, 2003b) is the logic of left-continuous non-commutative t-norms or, equivalently, that the logic psMTL enjoys standard completeness. In the present paper we provide an alternative proof for the standard completeness theorem for the logic psMTL and we furthermore show that this result can be obtained also for finite theories.

References

  1. Cignoli, R., Esteva, F., Godo, L., and Torrens, A. (2000). Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Computing, 4:106-112.
  2. Diaconescu, D. (2012). On the non-commutative propositional logic psmtl and its extensions. submitted.
  3. Esteva, F. and Godo, L. (2001). Monoidal t-norm based logic: Towards a logic for left-continuous t-norms. Fuzzy Sets and Systems, 124(3):271-288.
  4. Flondor, P., Georgescu, G., and Iorgulescu, A. (2001). Pseudo-t-norms and pseudo-bl algebras. Soft Computing, 5:355-371.
  5. Girard, J.-Y. (1995). Linear logic: its syntax and semantics. In Girard, J.-Y., Lafont, Y., and Regner, L., editors, Advances in Linear Logic,, volume 222 of London Math. Soc. Lecture Notes, pages 1-42. Cambridge Univ. Press.
  6. Hájek, P. (1998). Metamathematics of fuzzy logic. Trans. in Logic, 4.
  7. Hájek, P. (2003a). Fuzzy logics with non-commutative conjunctions. J. Logic. Comput., 13:469-479.
  8. Hájek, P. (2003b). Observations on non-commutative fuzzy logic. Soft Computing, 8:38-43.
  9. Horc?ik, R. (2007). Alternative proof of standard completeness theorem for mtl. Soft Computing, 11(2):123-129.
  10. Hrbacek, K. and Jech, T. (1999). Introduction to set theory. Monographs and textbooks in pure and applied mathematics. Dekker, New York.
  11. Jenei, S. and Montagna, F. (2002). A proof of standard completeness for esteva and godo's logic mtl. Studia Logica, 70(2):183-192.
  12. Jenei, S. and Montagna, F. (2003). A proof of standard completeness for non-commutative monoidal t-norm logic. Neural Network World, 13:481-488.
  13. Kühr, J. (2003). Pseudo-bl-algebras and drl-monoids. Math. Bohem., 128:199-208.
  14. Lambek, J. (1958). The mathematics of sentence structure. Amer. Math. Montly, 65:154-169.
  15. Mulvey, C. and Nawaz, M. (1995). Quantales: quantale sets. In Höhle, U. and Klement, E., editors, NonClassical Logics and Their Applications to Fuzzy Subsets, pages 219-234. Kluwer Acad. Publ., Dordrecht, Boston, London.
  16. Rosenthal, K. (1990). Quantales and their applications. In Pitman Research Notes in Mathematics, volume 234. Longman Scientific and Technical, Essex.
  17. Schmerling, S. (1975). Asymmetric conjunction and rules of conversation. In Cole, P. and Morgan, J., editors, Speech Acts of Syntax and Semantics, volume 3, pages 211-231. Academic Press, New York.
  18. Schweizer, B. and Sklar, A. (1960). Statistical metrics. Pac. J. Math., 10:313-334.
Download


Paper Citation


in Harvard Style

Diaconescu D. (2012). Non-commutative Fuzzy Logic psMTL - An Alternative Proof for the Standard Completeness Theorem . In Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012) ISBN 978-989-8565-33-4, pages 350-356. DOI: 10.5220/0004151603500356


in Bibtex Style

@conference{fcta12,
author={Denisa Diaconescu},
title={Non-commutative Fuzzy Logic psMTL - An Alternative Proof for the Standard Completeness Theorem},
booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012)},
year={2012},
pages={350-356},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004151603500356},
isbn={978-989-8565-33-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2012)
TI - Non-commutative Fuzzy Logic psMTL - An Alternative Proof for the Standard Completeness Theorem
SN - 978-989-8565-33-4
AU - Diaconescu D.
PY - 2012
SP - 350
EP - 356
DO - 10.5220/0004151603500356