Enhancing the Accuracy of Mapping to Multidimensional Optimal Regions using PCA

Elham Bavafaye Haghighi, Mohammad Rahmati

2012

Abstract

Mapping to Multidimensional Optimal Regions (M2OR) is a special purposed method for multiclass classification task. It reduces computational complexity in comparison to the other concepts of classifiers. In order to increase the accuracy of M2OR, its code assignment process is enriched using PCA. In addition to the increment in accuracy, corresponding enhancement eliminates the unwanted variance of the results from the previous version of M2OR. Another advantage is more controllability on the upper bound of V.C. dimension of M2OR which results in a better control on its generalization ability. Additionally, the computational complexity of the enhanced-optimal code assignment algorithm is reduced in training phase. By the other side, partitioning the feature space in M2OR is an NP hard problem. PCA plays a key role in the greedy feature selection presented in this paper. Similar to the new code assignment process, corresponding greedy strategy increases the accuracy of the enhanced M2OR.

References

  1. Bala, M., Agrawal, R. K., 2009, Evaluation of Decision Tree SVM Framework Using Different Statistical Measures, International Conference on Advances in Recent Technologies in Communication and Computing, 341-345.
  2. Bavafa, E., Yazdanpanah, M. J., Kalaghchi, B., SoltanianZadeh, H., 2009, Multiscale Cancer Modeling: in the Line of Fast Simulation and Chemotherapy, Mathematical and Computer Modelling 49, 1449_1464.
  3. Bazaraa, M., Sherali, H. D., Shetty, C. M., 2006, Nonlinear Programming, theory and Algorithms, 3rd ed., John Wiley and Sons.
  4. Ben-Hur, A., Horn, D., Ziegelmann, H. T., Vapnik, V., 2001, Support Vector Clustering, Journal of Machine Learning Research 2, 125-137.
  5. Ditenbach, M., Rauber A., Merkel, D., 2002, Uncovering hierarchical structure in data using the growing hierarchical self-organizing map, Neurocomputing 48, 199-216.
  6. El-Rewini, H., Abd-El-Barr, M., 2005, Advanced Computer Architechture and Parallel Processing, John Willey and Sons.
  7. Fu, Zh., Robles-Kelly, A., Zhou, J., 2010, Mixing Linear SVMs for Nonlinear Classification, IEEE Transactions On Neural Networks 21, 1963-1975.
  8. Heath, M. T., 1997, Scientific Computing: An Introductory Survey, Mc Graw Hill.
  9. Hofmann, T., Scheolkopf, B., Smola, A. J., 2008, Kernel Methods in Machine Learning, The Annals of Statistics 36, 1171-1220.
  10. Izenman, A. J., 2008, Modern Multivariate Statistical Technics, Springer.
  11. Jolliffe, I. T., 2002, Principle Component Analysis, 2nd ed., Springer.
  12. Kacprzyk, J., 2007, Challenges for Computational Intelligence, in: A Trend on Regularization and Model Selection in Statistical Learning: A Bayesian Ying Yang Learning Perspective, Springer, 343-406.
  13. Kietzmann, T. C., Lange, S., M., Riedmiller, 2008, Increamental GRLVQ: Learning Relevant Features for 3D Object Recognition, Neurocomputing 71, 2868- 2879.
  14. Kohonen, T., 1997, Self Organizing Maps, Springer Series in Information Science, 2nd ed., Springer.
  15. Kumara, K. V., Negi, A., 2008, SubXPCA and a generalized feature partitioning approach to principal component analysis, Pattern Recognition, 1398-1409.
  16. LeCun, Y., Bottou, L., Bengio Y., Haffner, P., 1986, Gradient-Based Learning Applied to Document Recognition, Proceedings of IEEE, 86, 2278-2324.
  17. Martin, C., Diaz, N. N., Ontrup, J., Nattkemper, T. W., 2008, Hyperbolic SOM-based Clustering of DNA Fragment Features for Taxonomic Visualization and Classification, Bioinformatics 24, 1568-1574.
  18. Meyer, C. D., 2000, Matrix Analysis and Applied Linear Algebra, SIAM.
  19. Nene, S. A., Nayar, Sh. K., Murase, H., 1996, Columbia Object Image Library (COIL 100), Technical Report No. CUCS-006-96, Department of Computer Science, Columbia University.
  20. Ontrup, J., Ritter, H., 2006, Large-Scale data exploration with the hierarchically growing hyperbolic SOM, Neural Networks 19, 751-761.
  21. Sawaragi, Y., Nakayama, H., Tanino, T., 1985, Theory of Multiobjective Optimization, Academic Press.
  22. Schoelkopf, B., Smola, A. J., 2002, Learning with Kernels, MIT press.
  23. Sen, M. U., Erdogan, H., 2011, Max-Margin Stacking and Sparse Regularization for Linear Classifier Combination and Selection, Cornell University Library, arXiv:1106.1684v1 [cs.LG].
  24. Sharma, A., Paliwal, K. K., 2007, Fast principal component analysis using fixed-point algorithm, Pattern Rcognition Letters, 1151-1155.
  25. Stoer, J., Bulirsch, R., 2002, Introduction to numerical analysis, Springer.
  26. Tarantola, A., 2005, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM.
  27. Theodoridis, S., Koutroumbas, K., 2003, Pattern Recognition, 2nd ed., Elsevier Academic Press.
  28. Vapnik, V. N., 2000, The Nature of Statistical Learning Theory, 2nd ed., Springer.
  29. Vijaya Kumar, K., Negi, A., 2007, A Feature Partitioning Approach to Subspace Classification, IEEE TENCON 2007, 1-4.
  30. Villegas, M., Paredes, R., 2011, Dimensionality reduction by minimizing nearest-neighbor classification error, Pattern Recognition Letters 32, 633-639.
  31. Yang, M. H., Roth, D., Ahuja, N., 2002, Learning to Recognize 3D Objects with SNoW, Neural Computation 14, 1071-1104.
  32. Zurada, J., 1992, Introduction to Artificial Neural Systems, West Publishing Company.
Download


Paper Citation


in Harvard Style

Bavafaye Haghighi E. and Rahmati M. (2012). Enhancing the Accuracy of Mapping to Multidimensional Optimal Regions using PCA . In Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012) ISBN 978-989-8565-33-4, pages 536-546. DOI: 10.5220/0004153305360546


in Bibtex Style

@conference{ncta12,
author={Elham Bavafaye Haghighi and Mohammad Rahmati},
title={Enhancing the Accuracy of Mapping to Multidimensional Optimal Regions using PCA},
booktitle={Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012)},
year={2012},
pages={536-546},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004153305360546},
isbn={978-989-8565-33-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2012)
TI - Enhancing the Accuracy of Mapping to Multidimensional Optimal Regions using PCA
SN - 978-989-8565-33-4
AU - Bavafaye Haghighi E.
AU - Rahmati M.
PY - 2012
SP - 536
EP - 546
DO - 10.5220/0004153305360546