ACKNOWLEDGEMENTS
Supported by the project TIN2011-27696-C02-02
of the “Ministerio de Econom´ıa y Competitividad”
of Spain. Thanks also to the Funding Program
for Research Groups of Excellence with code
“04552/GERM/06” granted by the “Agencia de
Ciencia y Tecnolog´ıa” of the Region of Murcia
(Spain). Also, Raquel Mart´ınez is supported by the
scholarship program FPI from this Agency of the
Region of Murcia.
REFERENCES
Asuncion, A. and Newman, D. J. (2007).
UCI Machine Learning Repository,
http://www.ics.uci.edu/ mlearn/MLRepository.html.
Irvine, CA: University of California, School of
Information and Computer Science.
Battiti, R. (1994). Using mutal information for selection
features in supervised neural net learning. IEEE
Transactions on Neural Networks, 5:537–550.
Bonissone, P. P., Cadenas, J. M., Garrido, M. C., and
D´ıaz-Valladares, R. A. (2010). A fuzzy random forest.
International Journal of Approximate Reasoning,
51(7):729–747.
Cadenas, J. M., Garrido, M. C., Mart´ınez, R., and
Bonissone, P. P. (2012a). Extending information
processing in a fuzzy random forest ensemble. Soft
Computing, 16(5):845–861.
Cadenas, J. M., Garrido, M. C., Mart´ınez, R., and
Bonissone, P. P. (2012b). Ofp
class: a hybrid
method to generate optimized fuzzy partitions for
classification. Soft Computing, 16(4):667–682.
Casillas, J., Cord´on, O., del Jes´us, M. J., and Herrera,
F. (2001). Genetic feature selection in a fuzzy
rule-based classification system learning process for
high-dimensional problems. Information Sciences,
139:135–157.
Diaz-Uriarte, R. and de Andr´es, S. A. (2006). Gene
selection and classification of microarray data using
random forest. BMC Bioinformatics, 7(3).
Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern
Classification. Wiley-Interscience Publication.
Ferreira, A. J. and Figueiredo, M. A. T. (2012).
An unsupervised approach to feature
discretization and selection. Pattern Recognition
(doi:10.1016/j.patcog.2011.12.008).
Garrido, M. C., Cadenas, J. M., and Bonissone, P. P.
(2010). A classification and regression technique to
handle heterogeneous and imperfect information. Soft
Computing, 14:1165–1185.
Guyon, I., Weston, J., Barnhill, S., and Bapnik, V. (2002).
Gene selection for cancer classification using support
vector machine. Machine Learning, 46:389–422.
He, Q., Xie, Z., Hu, Q., and Wu, C. (2011).
Neighborhood based sample and feature selection
for svm classification learning. Neurocomputing,
74:1585–1594.
Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical
pattern recognition: a review. IEEE Trans. Pattern
Anal. Mach. Intell., 22(1):4–37.
Jensen, R. and Shen, Q. (2007). Fuzzy-rough sets assisted
attribute selection. IEEE Transactions on Fuzzy
Systems, 15(1):73–89.
Kabir, M. M., Shahjahan, M., and Murase, K. (2012).
A new hybrid ant colony optimization algorithm for
feature selection. Expert System with Applications,
39:3747–3763.
Kira, K. and Rendell, L. (1992). A practical approach
to feature selection. In Proceedings of the Ninth
International Conference on Machine Learning,
pages 249–256.
Luukka, P. (2011). Feature selection using fuzzy entropy
measures with similarity classifier. Expert Systems
with Applications, 38:4600–4607.
Mladenic, D. (2006). Feature selection for dimensionality
reduction. subspace, latent structure and feature
selection, statistical and optimization. SLSFS 2005,
Lecture Notes in Computer Science, 3940:84–102.
Pedrycz, W. and Vukovich, G. (2002). Feature analysis
through information granulation and fuzzy sets.
Pattern Recognition, 35:825–834.
Saeys, Y., Rouze, P., and de Peer, Y. V. (2007). In search of
the small ones: improved prediction of short exons in
vertebrates, plants, fungi and protists. Bioinformatics,
23(4):414–420.
S´anchez, L., Suarez, M. R., and Couso, I. (2005). A fuzzy
definition of mutual information with application
to the desing of genetic fuzzy classifiers. In
Proceedings of the International Conference on
Machine Intelligence, pages 602–609.
S´anchez, L., Su´arez, M. R., Villar, J. R., and Couso,
I. (2008). Mutual information-based feature
selection and partition design in fuzzy rule-based
classifiers from vague data. International Journal of
Approximate Reasoning, 49:607–622.
Su´arez, M. R., Villar, J. R., and Grande, J. (2010). A feature
selection method using a fuzzy mutual information
measure. International Journal of Reasoning-based
Intelligent Systems, 2:133–141.
Vieira, S. M., Sousa, J. M. C., and Kaymak, U. (2012).
Fuzzy criteria for feature selection. Fuzzy set and
System, 189:1–18.
Yager, R. R. (1988). On ordered weighted averaging
aggregation operators in multicriteria decision
making. IEEE transactions on Systems, Man and
Cybernetics, 18:183–190.
Yan-Qing, Y., Ju-Sheng, M., and Zhou-Jun, L. (2011).
Attribute reduction based on generalized fuzzy
evidence theory in fuzzy decision systems. Fuzzy Sets
and Systems, 170:64–75.
IJCCI2012-InternationalJointConferenceonComputationalIntelligence
366