crossing-fiber voxel configurations, as well as for es-
timating the number of fibers per voxel, was adequate.
Nevertheless, one drawback of the proposed method-
ology concerns the necessity of applying model se-
lection criteria to estimate the number of components
in the mixture. For multiple fiber profiles, the fit-
ting process has to be applied repeatedly to different
configurations before the best final decision is esti-
mated. This algorithmic process entails higher time-
complexities than deterministic ones.
We believe that the directional statistics technique
proposed in this work offers significant increases in
sensitivity for anatomical analysis over traditional ap-
proaches. We intend to build on the quantitative and
qualitative information provided by the proposed di-
rectional statistics approach to support the study of
fiber tract architecture in the brain. In particular, this
information may be explored to build robust prob-
abilistic tractographic algorithms for complex fiber
configurations.
REFERENCES
Adler, D. and Murdoch, D. (2010). rgl: 3D Visualiza-
tion Device System (OpenGL). R package version
0.92.879.
Banerjee, A., Dhillon, I. S., Ghosh, J., and Sra, S. (2005).
Clustering on the Unit Hypersphere using von Mises-
Fisher Distributions. Journal of Machine Learning
Research, 6:1345–1382.
Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., and Al-
droubi, A. (2000). In Vivo Fiber Tractography Us-
ing DT-MRI Data. Magnetic Resonance in Medicine,
44:625–632.
Cho, K.-H., Yeh, C.-H., Tournier, J.-D., Chao, Y.-P., Chen,
J.-H., and Lin, C.-P. (2008). Evaluation of the accu-
racy and angular resolution of q-ball imaging. Neu-
roImage, 42:262–271.
Descoteaux, M., Deriche, R., Kn¨osch, T. R., and Anwan-
der, A. (2009). Deterministic and Probabilistic Trac-
tography Based on Complex Fibre Orientation Dis-
tributions. IEEE Transactions on Medical Imaging,
28(2):269–286.
Hornik, K. and Gr¨un, B. (2011). Mixtures of von Mises
Fisher Distributions. R package version 0.0-0.
Jian, B., Vemuri, B. C.,
¨
Ozarslan, E., Carney, P. R., and
Mareci, T. H. (2007). A novel tensor distribution
model for the diffusion-weighted MR signal. Neu-
roImage, 37:164–176.
Jiang, H., Golay, X., van Zijl, P. C., and Mori, S. (2002).
Origin and minimization of residual motion-related
artifacts in navigator-corrected segmented diffusion-
weighted EPI of the human brain. Magnetic Reso-
nance in Medicine, 47:818–822.
Kuo, L.-W., Chen, J.-H., Wedeen, V. J., and Tseng, W.-Y. I.
(2008). Optimization of diffusion spectrum imaging
and q-ball imaging on clinical MRI system. NeuroIm-
age, 41:7–18.
Lenglet, C., Campbell, J. S. W., Descoteaux, M., Haro, G.,
Savadjiev, P., Wassermann, D., Anwander, A., De-
riche, R., Pike, G. B., Sapiro, G., Siddiqi, K., and
Thompson, P. M. (2009). Mathematical methods for
diffusion MRI processing. NeuroImage, 45(1, Supple-
ment 1):S111–S122.
Mardia, K. V. and Jupp, P. (2000). Directional Statistics.
John Wiley and Sons Ltd., 2nd edition.
Mori, S. and van Zijl, P. C. M. (2002). Fiber tracking:
principles and strategies - a technical review. NMR
in Biomedicine, 15:468–480.
¨
Ozarslan, E., Shepherd, T. M., Vemuri, B. C., Blackband,
S. J., and Mareci, T. H. (2006). Resolution of complex
tissue microarchitecture using the diffusion orienta-
tion transform (DOT). NeuroImage, 31:1086–1103.
Polzehl, J. and Tabelow, K. (2011). dti: Beyond the Gaus-
sian Model in Diffusion-Weighted Imaging. Journal
of Statistical Software, 44(12).
R Development Core Team (2010). R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann,
C. F., Behrens, T. E. J., Johansen-Berg, H., Bannis-
ter, P. R., Luca, M. D., Drobnjak, I., Flitney, D. E.,
Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., Ste-
fano, N. D., Brad, J. M., and Matthews, P. M. (2004).
Advances in Functional and Structural MR Image
Analysis and Implementation as FSL. Technical Re-
port TR04SS2, FMRIB (Oxford Centre for Functional
Magnetic Resonance Imaging of the Brain).
Yeh, F.-C., Wedeen, V. J., and Tseng, W.-Y. I. (2010). Gen-
eralized q-Sampling Imaging. IEEE Transactions on
Medical Imaging, 29(9):1626–1635.
IJCCI2012-InternationalJointConferenceonComputationalIntelligence
714