REFERENCES
Adan, A., Serra-Grabulosa, J.M., 2010. Effects of caffeine
and glucose, alone and combined, on cognitive
performance. Human Psychopharmacology clinical
and experimental, 25 (4), 310 – 317.
Bartés-Serrallonga, M., Solé-Casals, J., Adan, A., Falcon
C., Bargallo, N., and Serra-Grabulosa, J. M., 2011.
Statistical analysis of functional MRI data using
independent component analysis. International
conference on neural computation theory and
applications. 430 – 436.
Calhoun, V. D., Adali, T., Pearlson, G. D. and Pekar, J. J.,
2001. A Method for Making Group Inferences From
Functional MRI Data Using Independent Component
Analysis. Human Brain Mapping, 14, 140 – 151.
Calhoun, V. D., Adali, T., Pearlson,G. D., 2004.
Independent component analysis applied to fMRI data:
a generative model for validating results. The Journal
of VLSI Signal Processing, 37, 281 – 291.
Cornblatt, B.A., Lezenweger, M.F., Erlenmeyer-Kimling,
L., 1989. The Continuous Performance Test, Identical
Pairs Version: II. Contrasting attentional profiles in
schizophrenic and depressed patients. Psychiatry
Research, 29, 65 – 85.
D’Esposito, M., Zarahn, E., Aguirre, G. K., 1999. Event-
Related functional MRI: implications for cognitive
Psychology. Psychological Bulletin, 125, 155 – 64.
Lim, J. S., 1990. Two-Dimensional Signal and Image
Processing. Prentice Hall.
Lindquist, M. and Wager, T., 2008. Spatial smoothing in
fmri using prolate spheroidal wave functions. Human
Brain mapping, 29, 1276 – 1287.
Poline, J. and Mazoyer, B. 1994. Analysis of individual
brain activation maps using hierarchical description
and multiscale detection. IEEE Transactions in
Medical Imaging, 4, 702 – 710.
Serra-Grabulosa J. M, Adan A, Falcon C, Bargallo N,
2010a Glucose and caffeine effects on sustained
attention: an exploratory fMRI study. Human
Psychopharmacology clinical and experimental 25 (7-
8), 543 – 552
Shafie, K., Sigal, B., Siegmund, D., and Worsley, K.,
2003. Rotation space random fields with an
application to fmri data. Annals of Statistics, 31, 1732
– 1771.
Tabelow, K., Polzehl, J., Voss, H. U., Spokoiny, V., 2006.
Analyzing fMRI experiments with structural adaptive
smoothing procedures. NeuroImage, 33, 55 –62.
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D.,
Crivello, F., Etard, O., Delcroix, N., Mazoyer, B. and
Joliot, M., 2002. Automated anatomical labeling of
activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain.
Neuroimage 15, 273 – 289.
Van De Ville, D., Blu, T., and Unser, M., 2006. Surfing
the brain: An overview of wavelet-based techniques
for fmri data analysis. IEEE Engineering in Medicine
and Biology Magazine, 25, 65 – 78. .
Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C.,
Friston, K. J., and Evans, A. C., 1996. A unified
statistical approach for determining significant signals
in images of cerebral activation. Human Brain
Mapping, 4, 58 – 73.
Yoo, S. S., Paralkar, G., Panych, L. P., 2004. Neural
substrates associated with the concurrent performance
of dual working memory tasks. The international
journal of neuroscience. 114(6), 613 – 31.
Yue, Y., Loh, J.M., Lindquist, M.A., 2010. Adaptive
spatial smoothing of fMRI images. Statistics and Its
Interface, 3, 3 – 13.
AdaptiveSmoothingAppliedtofMRIData
683