pattern classification of magnetic resonance imaging.
Neurobiology of Aging, 29(4):514–523.
Desikan, R. S., Cabral, H. J., Hess, C. P., Dillon, W. P.,
Glastonbury, C. M., Weiner, M. W., Schmansky, N. J.,
Greve, D. N., Salat, D. H., Buckner, R. L., Fischl, B.,
and Initiative, A. D. N. (2009). Automated mri mea-
sures identify individuals with mild cognitive impair-
ment and alzheimer’s disease. Brain, 132(8):2048–
2057.
Du, A. T., Schuff, N., Amend, D., Laakso, M. P., Hsu,
Y. Y., Jagust, W. J., Yaffe, K., Kramer, J. H., Reed, B.,
Norman, D., Chui, H. C., and Weiner, M. W. (2001).
Magnetic resonance imaging of the entorhinal cortex
and hippocampus in mild cognitive impairment and
alzheimer’s disease. Journal of Neurology, Neuro-
surgery & Psychiatry, 71(4):441–447.
Fan, Y., Batmanghelich, N., Clark, C. M., and Davatzikos,
C. (2008). Spatial patterns of brain atrophy in mci
patients, identified via high-dimensional pattern clas-
sification, predict subsequent cognitive decline. Neu-
roImage, 39(4):1731–1743.
Fennema-Notestine, C., Hagler, D. J., McEvoy, L. K.,
Fleisher, A. S., Wu, E. H., Karow, D. S., and Dale,
A. M. (2009). Structural mri biomarkers for preclini-
cal and mild alzheimer’s disease. Human Brain Map-
ping, 30(10):3238–3253.
Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich,
M., Haselgrove, C., van der Kouwe, A., Killiany, R.,
Kennedy, D., Klaveness, S., Montillo, A., Makris, N.,
Rosen, B., and Dale, A. M. (2002). Whole brain
segmentation: Automated labeling of neuroanatomi-
cal structures in the human brain. Neuron, 33(3):341–
355.
Gerardin, E., Chetelat, G., Chupin, M., Cuingnet, R., Des-
granges, B., Kim, H.-S., Niethammer, M., Dubois, B.,
Lehericy, S., Garnero, L., Eustache, F., and Colliot, O.
(2009). Multidimensional classification of hippocam-
pal shape features discriminates alzheimer’s disease
and mild cognitive impairment from normal aging.
NeuroImage, 47(4):1476–1486.
Goldszal, A. F., Davatzikos, C., Pham, D. L., Yan, M. X.,
Bryan, R. N., and Resnick, S. M. (1998). An image-
processing system for qualitative and quantitative vol-
umetric analysis of brain images. Journal Of Com-
puter Assisted Tomography, 22(5):827–837.
Juottonen, K., Laakso, M., Insausti, R., Lehtovirta, M.,
Pitknen, A., Partanen, K., and Soininen, H. (1998).
Volumes of the entorhinal and perirhinal cortices in
alzheimers disease. Neurobiology of Aging, 19(1):15–
22.
Kloppel, S., Stonnington, C. M., Chu, C., Draganski, B.,
Scahill, R. I., Rohrer, J. D., Fox, N. C., Jack, C. R.,
Ashburner, J., and Frackowiak, R. S. J. (2008). Auto-
matic classification of mr scans in alzheimer’s disease.
Brain, 131(3):681–689.
Lotjonen, J., Wolz, R., Koikkalainen, J., Julkunen, V., Thur-
fjell, L., Lundqvist, R., Waldemar, G., Soininen, H.,
and Rueckert, D. (2011). Fast and robust extraction
of hippocampus from mr images for diagnostics of
alzheimer’s disease. NeuroImage, 56(1):185–196.
Magnin, B., Mesrob, L., Kinkingnhun, S., Plgrini-Issac,
M., Colliot, O., Sarazin, M., Dubois, B., Lehricy, S.,
and Benali, H. (2009). Support vector machine-based
classification of alzheimers disease from whole-brain
anatomical mri. Neuroradiology, 51:73–83.
Pennanen, C., Kivipelto, M., Tuomainen, S., Hartikainen,
P., Hnninen, T., Laakso, M. P., Hallikainen, M., Van-
hanen, M., Nissinen, A., Helkala, E.-L., Vainio, P.,
Vanninen, R., Partanen, K., and Soininen, H. (2004).
Hippocampus and entorhinal cortex in mild cogni-
tive impairment and early ad. Neurobiology of Aging,
25(3):303–310.
Tohka, J., Zijdenbos, A., and Evans, A. (2004). Fast and ro-
bust parameter estimation for statistical partial volume
models in brain mri. NeuroImage, 23(1):84–97.
Vemuri, P., Gunter, J. L., Senjem, M. L., Whitwell, J. L.,
Kantarci, K., Knopman, D. S., Boeve, B. F., Petersen,
R. C., and Jr., C. R. J. (2008). Alzheimer’s disease di-
agnosis in individual subjects using structural mr im-
ages: Validation studies. NeuroImage, 39(3):1186–
1197.
EarlyAlzheimer'sDiseaseProgressionDetectionusingMulti-subnetworksoftheBrain
691