Haasen, D., K
¨
ohler, C., Neuhaus, G., and Merkle, T. (1999).
Nuclear export of proteins in plants: AtXPO1 is the
export receptor for leucine-rich nuclear export signals
in Arabidopsis thaliana. Plant J, 20(6):695–705.
Hua, S. and Sun, Z. (2001). Support Vector Machine ap-
proach for protein subcellular localization prediction.
Bioinformatics, 17:721–728.
Ihaka, R. and Gentleman, R. (1996). R: a language for data
analysis and graphics. Journal of computational and
graphical statistics.
Kawashima, S. and Kanehisa, M. (2000). AAindex: amino
acid index database. Nucleic Acids Res, 28:374.
Kuhn, M. (2008a). Building predictive models in R using
the caret package. JSS Journal of Statistical Software,
28(5):1–26.
Kuhn, M. (2008b). Documentation for package caret ver-
sion 3.45. [http://caret.r-forge.r-project.org/].
Kumar, M. and Raghava, G. P. S. (2009). Prediction of
nuclear proteins using SVM and HMM models. BMC
Bioinformatics, 10:22.
La-Cour, T., Gupta, R., Rapacki, K., Skriver, K., Poulsen,
F.-M., and Brunak, S. (2003). NESbase version 1.0: a
database of nuclear export signals. Nucleic Acids Res,
31(1):393–6.
La-Cour, T., Kiemer, L., Mølgaard, A., Gupta, R., Skriver,
K., and Brunak, S. (2004). Analysis and prediction of
leucine-rich nuclear export signals. Protein Eng Des
Sel, 17(6):527–36.
Lee, B. J., Shin, M. S., Oh, Y. J., Oh, H. S., and Ryu,
K. H. (2009). Identification of protein functions us-
ing a machine-learning approach based on sequence-
derived properties. Proteome science, 7:27.
Lei, Z. and Dai, Y. (2005). An SVM-based system for pre-
dicting protein subnuclear localizations. BMC Bioin-
formatics, 6:291.
Liu, B., Wang, X., Lin, L., Tang, B., Dong, Q., and Wang,
X. (2009). Prediction of protein binding sites in pro-
tein structures using hidden Markov support vector
machine. BMC Bioinformatics, 10:381.
Merkle, T. (2001). Nuclear import and export of proteins in
plants: a tool for the regulation of signalling. Planta,
213:499–517.
Merkle, T. (2004). Nucleo-cytoplasmic partitioning of pro-
teins in plants: implications for the regulation of envi-
ronmental and developmental signalling. Curr Genet,
44:231–260.
Merkle, T. (2011). Nucleo-cytoplasmic transport of proteins
and rna in plants. Plant Cell Rep, 30:153–176.
Myers, E. W. and Miller, W. (1988). Optimal alignments in
linear space. Comput Appl Biosci, 4(1):11–17.
Ossareh-Nazari, B., Gwizdek, C., and Dargemont, C.
(2001). Protein export from the nucleus. Traffic,
2(10):684–9.
Pazos, F. and jung Wook Bang (2006). Computational pre-
diction of functionally important regions in proteins.
Current Bioinformatics, 1(1):15–23.
Pemberton, L.-F. and Paschal, B.-M. (2005). Mechanisms
of receptor-mediated nuclear import and nuclear ex-
port. Traffic, 6(3):187–198.
Provost, F. and Fawcett, T. (2001). Robust classification for
imprecise environments. Machine Learning, 42:203–
231.
R Development Core Team (2005). R: A language and
environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. ISBN 3-
900051-07-0.
Riis, S. and Krogh, A. (1996). Improving prediction of pro-
tein secondary structure using structured neural net-
works and multiple sequence alignments. J Comput
Biol, 3:163–183.
Sammeth, M., Rothg
¨
anger, J., Esser, W., Albert, J., Stoye,
J., and Harmsen, D. (2003). QAlign: quality-based
multiple alignments with dynamic phylogenetic anal-
ysis. Bioinformatics, 19(12):1592–1593.
Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T.
(2005). ROCR: visualizing classifier performance in
R. Bioinformatics, 21(20):3940.
Str
¨
om, A. C. and Weis, K. (2001). Importin-beta-
like nuclear transport receptors. Genome Biol,
2(6):Reviews–3008.
The Gene Ontology Consortium (2000). Gene Ontol-
ogy: tool for the unification of biology. Nat Genet,
25(1):25–29.
Timm, W., Scherbart, A., B
¨
ocker, S., Kohlbacher, O., and
Nattkemper, T. W. (2008). Peak intensity prediction
in maldi-tof mass spectrometry: a machine learning
study to support quantitative proteomics. BMC Bioin-
formatics, 9:443.
Tung, C.-W. and Ho, S.-Y. (2008). Computational identifi-
cation of ubiquitylation sites from protein sequences.
BMC Bioinformatics, 9:310.
BIOINFORMATICS2013-InternationalConferenceonBioinformaticsModels,MethodsandAlgorithms
104