a simple linear SVM as well for object recognition
tasks as for FGVC ones.
As potential future works, many perspectives can
be investigated. For example, complementary patch,
multi-scale variants of LPQ could be coupled with our
HB/HIB/HT/HIT approach, in order train a unique
dictionary with these fused patches. Higher dimen-
sion local pattern can be also associated with the
Sc framework such those proposed by (Hussain and
Triggs, 2012). Finally, experimenting with LSc (Gao
et al., 2010) or FV (Krapac et al., 2011) should im-
prove the encoding part of the pipeline, while super-
vised pooling techniques (Jia et al., 2011) will surely
also improve results.
REFERENCES
Avila, S. E. F., Thome, N., Cord, M., Valle, E., and de Al-
buquerque Ara
´
ujo, A. (2011). Bossa: Extended bow
formalism for image classification. In ICIP’ 11.
Bianconi, F. and Fern
´
andez, A. (2011). On the occur-
rence probability of local binary patterns: A theoret-
ical study. Journal of Mathematical Imaging and Vi-
sion, 40(3):259–268.
Bianconi, F., Gonz
´
alez, E., Fern
´
andez, A., and Saetta,
S. A. (2012). Automatic classification of granite tiles
through colour and texture features. Expert Syst.
Appl., 39(12):11212–11218.
Bo, L., Lai, K., Ren, X., and Fox, D. (2011a). Object recog-
nition with hierarchical kernel descriptors. In CVPR’
11.
Bo, L., Ren, X., and Fox, D. (2010). Kernel descriptors for
visual recognition. In NIPS’ 10.
Bo, L., Ren, X., and Fox, D. (2011b). Hierarchical matching
pursuit for image classification: Architecture and fast
algorithms. In NIPS’ 11, pages 2115–2123.
Boiman, O., Shechtman, E., and Irani, M. (2008). In de-
fense of nearest-neighbor based image classification.
In CVPR’ 08.
Bosch, A., Zisserman, A., and Munoz, X. (2007). Im-
age classification using random forests and ferns. In
ICCV’ 07.
Boureau, Y., Bach, F., LeCun, Y., and Ponce, J. (2010a).
Learning mid-level features for recognition. In CVPR’
10.
Boureau, Y., Le Roux, N., Bach, F., Ponce, J., and LeCun,
Y. (2011). Ask the locals: multi-way local pooling for
image recognition. In ICCV’ 11.
Boureau, Y., Ponce, J., and LeCun, Y. (2010b). A theoreti-
cal analysis of feature pooling in vision algorithms. In
ICML’ 10.
Chai, Y., Lempitsky, V. S., and Zisserman, A. (2011). Bicos:
A bi-level co-segmentation method for image classifi-
cation. In ICCV’ 11.
Chatfield, K., Lempitsky, V., Vedaldi, A., and Zisserman,
A. (2011). The devil is in the details: an evaluation of
recent feature encoding methods. In BMVC.
Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen,
X., and Gao, W. (2010). Wld: A robust local image
descriptor. IEEE Trans. PAMI, 32(9).
Choi, J., Schwartz, W. R., Guo, H., and Davis, L. S. (2012).
A complementary local feature descriptor for face
identification. In WACV’ 12.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In CVPR’ 05.
Deselaers, T. and Ferrari, V. (2010). Global and efficient
self-similarity for object classification and detection.
In CVPR’ 10.
Duchenne, O., Joulin, A., and Ponce, J. (2011). A graph-
matching kernel for object categorization. In ICCV’
11.
Elfiky, N. M., Khan, F. S., van de Weijer, J., and Gonz
`
alez,
J. (2012). Discriminative compact pyramids for ob-
ject and scene recognition. Pattern Recognition,
45(4):1627–1636.
Fei-Fei, L., Fergus, R., and Perona, P. (2007). Learning gen-
erative visual models from few training examples: An
incremental bayesian approach tested on 101 object
categories. Comput. Vis. Image Underst., 106(1):59–
70.
Fr
¨
oba, B. and Ernst, A. (2004). Face detection with the
modified census transform. In FGR’ 04.
Gao, S., Tsang, I. W.-H., Chia, L.-T., and Zhao, P. (2010).
Local features are not lonely laplacian sparse coding
for image classification. In CVPR ’10.
Heikkil
¨
a, M., Pietik
¨
ainen, M., and Schmid, C. (2006). De-
scription of interest regions with center-symmetric lo-
cal binary patterns. In CVGIP ’06.
Hsieh, C., Chang, K., Lin, C., and Keerthi, S. (2008). A
dual coordinate descent method for large-scale linear
svm.
Huang, D., Shan, C., Ardabilian, M., Wang, Y., and Chen,
L. (2011). Local Binary Patterns and Its Application to
Facial Image Analysis: A Survey. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, 41(4):1–17.
Hussain, S. u. and Triggs, W. (2012). Visual recognition
using local quantized patterns. In CVPR’ 12.
Jia, Y., Huang, C., and Darrell, T. (2011). Beyond Spatial
Pyramids: Receptive Field Learning for Pooled Image
Features. In NIPS ’11.
Jun, B. and Kim, D. (2012). Robust face detection using lo-
cal gradient patterns and evidence accumulation. Pat-
tern Recognition, 45(9):3304–3316.
Khan, F. S., van de Weijer, J., Bagdanov, A. D., and Vanrell,
M. (2011). Portmanteau vocabularies for multi-cue
image representation. In NIPS’ 11.
Khosla, A., Jayadevaprakash, N., Yao, B., and Fei-Fei, L.
(2011a). Novel dataset for fine-grained image catego-
rization. In CVPR ’11.
Khosla, A., Jayadevaprakash, N., Yao, B., and Fei-Fei, L.
(2011b). Novel dataset for fine-grained image cate-
gorization. In First Workshop on Fine-Grained Visual
Categorization, CVPR ’11.
Krapac, J., Verbeek, J., and Jurie, F. (2011). Modeling Spa-
tial Layout with Fisher Vectors for Image Categoriza-
tion. In ICCV ’11.
EfficientBagofScenesAnalysisforImageCategorization
343