Figure 5: Prediction rate according to the varied Alpha-
Beta.
tion which achieved a high prediction rate up to 88%.
In addition, this paper has obtained the optimal values
for all the parameters that improve the prediction rate
and reduce the complexity. More work needs to be
carried out, for example the different number of mo-
bile users effect on using the new technique have to
be tested. In addition, the effect of the mobile users’
history, complexity time and memory usage with the
current techniques.
REFERENCES
Barbar, D. (1999). Mobile computing and databases-a sur-
vey. IEEE Transactions on Knowledge and Data En-
gineering, 11:108–117.
Capka, J. and Boutaba, R. (2004). Mobility Prediction in
Wireless Networks Using Neural Networks, volume
3271/2004. Springer Berlin / Heidelberg.
Daoud, M., Ayesh, A., Hopgood, A., and Al-Fayoumi, M.
(2011). A new splitting-based displacement predic-
tion approach for location-based services. In Systems,
Man, and Cybernetics (SMC), 2011 IEEE Interna-
tional Conference on, pages 392 –397.
Daoui, M., M’zoughi, A., Lalam, M., Belkadi, M., and
Aoudjit, R. (2008). Mobility prediction based on an
ant system. Comput. Commun., 31(14):3090–3097.
Das, S. and Sen, S. (1999). Adaptive location prediction
strategies based on a hierarchical network model in a
cellular mobile environment. In The Computer Jour-
nal, volume 42, pages 473–486.
Deneubourg, J.-L. and Goss, S. (1989). Collective patterns
and decision making. Ethology, Ecology and Evolu-
tion, 1(4):295–311.
Deneubourg, J.-L., Pasteels, J. M., and Verhaeghe, J. C.
(1983). Probabilistic behaviour in ants: A strategy of
errors? Journal of Theoretical Biology, 105:259–271.
Dorigo, M., Bonabeau, E., and Theraulaz, G. (2000). Ant
algorithms and stigmergy. Future Gener. Comput.
Syst., 16(9):851–871.
Dorigo, M. and Di Caro, G. (1999). The ant colony op-
timization meta-heuristic. McGraw-Hill Ltd., UK,
Maidenhead, UK, England.
Dorigo, M.; Maniezzo, V. C. A. (1996). Ant system: op-
timization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics Part
B: Cybernetics, 26:29 – 41.
Dorigoa, M. and Gambardella, L. M. (1997). Ant colonies
for the travelling salesman problem. Biosystems,
43(2):73–81.
Holma, H. and Toskala, A. (2001). Wcdma for umts: Radio
access for third generation mobile communications. In
Transactions on Networking, volume 9, pages 790–
800, New York, NY, USA. John Wiley and Sons.
J. Biesterfeld, E. E. and Jobmann, K. (1997). Location pre-
diction in mobile networks with neural networks. In
the International Workshop on Applications of Neural
Networks to Telecommunications, pages 207–214.
Kubach, U. (2000). A map-based, context-aware
hoarding mechanism. In Berichtskolloquium des
Graduiertenkollegs Parallele und Verteilte Sys-
teme,University of Stuttgart, Germany.
Kumar, B. P. V. and Venkataram, P. (2002). Prediction-
based location management using multilayer neural
networks. In Journal of Indian institute of science,
pages 7–21.
Lu, S.-C. L. H.-C. (2003). Applied neural network for lo-
cation prediction and resources reservation scheme in
wireless networks. In International Conference on
Communication Technology Proceedings, 2003, ICCT
2003, IEEE, volume 2, pages 958 – 961.
Ren, M. and Karimi, H. (2011). A fuzzy logic map match-
ing for wheelchair navigation. GPS Solutions, 15:1–
10. 10.1007/s10291-011-0229-5.
Ren, M. and Karimi, H. A. (2009a). A chain-code-based
map matching algorithm for wheelchair navigation.
Transactions in GIS, 13(2):197–214.
Ren, M. and Karimi, H. A. (2009b). A hidden markov
model-based map-matching algorithm for wheelchair
navigation. The Journal of Navigation, 62(03):383–
395.
S.Goss, R.Beckers, J. S.-J. (1990). How trail laying and
trail following can solve foraging problems for ant
colonies. in Behavioural Mechanisms of Food Selec-
tion, R.N.Hughes ed., NATO-ASI Series, G20:0.
Shah, S. H. and Nahrstedt, K. (2002). Predictive location-
based qos routing in mobile ad hoc networks. In
IEEE International Conference on Communications
(ICC ’02), volume 2, pages 1022–1027, New York,
NY, USA.
U, K. and Rothermel, K. (2000). An adaptive, location-
aware hoarding mechanism. In Proceedings. ISCC
2000. Fifth IEEE Symposium on Computers and Com-
munications, pages 615–620, Antibes-Juan les Pins,
France.
ICAART2013-InternationalConferenceonAgentsandArtificialIntelligence
424