vectors extracted from the lines. Usage of the frame-
work has been illustrated on data from two SPH sim-
ulations in astrophysics. We intend to investigate fur-
ther the feature extraction procedures adopted to gen-
erate the projection views of pathlines and stream-
features, as other alternatives might produce differ-
ent outcomes. Distortion errors are likely introduced
in the projection processes, and how they affect ex-
ploration of temporal behavior also deserves a careful
investigation, in line with validation of the framework
in cooperation with domain experts.
ACKNOWLEDGEMENTS
Authors acknowledge the financial support of
FAPESP, CNPq, CAPES-DAAD-PROBRAL, DFG
under contract number LI 1530/6-2 and are grateful
to S. Rosswog and M. Dan, from Jacobs University,
Bremen, Germany, for the simulation datasets.
REFERENCES
Akiba, H. and Ma, K.-L. (2007). A tri-space visualization
interface for analyzing time-varying multivariate vol-
ume data. In Proc. Eurographics/IEEE VGTC Symp.
Visualization, pages 115–122.
Blaas, J. and Post, C. P. B. F. (2008). Extensions of par-
allel coordinates for interactive exploration of large
multi-timepoint data sets. IEEE Trans. Vis. Computer
Graphics, 14(6):1436–1451.
Co, C. S., Friedman, A., Grote, D. P., Vay, J.-L., Bethel,
Wes, E., and Joy, K. I. (2004). Interactive methods for
exploring particle simulation data. Lawrence Berkeley
National Laboratory.
Falk, M., Grottel, S., and Ertl, T. (2010). Interactive image-
space volume visualization for dynamic particle sim-
ulations. In SIGRAD.
Faloutsos, C. and Lin, K.-I. (1995). FastMap. In Proc. ACM
SIGMOD Int. Conf. Management of Data, pages 163–
174, New York, New York, USA. ACM Press.
Gribble, C. P., Stephens, A. J., Guilkey, J. E., and Parker,
S. G. (2006). Visualizing particle-based simulation
datasets on the desktop. In British HCI Works. on
Combining Visualization and Interaction to Facilitate
Scientific Exploration and Discovery, pages 111–118.
Inselberg, A. (1985). The plane with parallel coordinates.
The Visual Computer, 1(2):69–91.
Joia, P., Paulovich, F. V., Coimbra, D., Cuminato, J. A.,
and Nonato, L. G. (2011). Local affine multidimen-
sional projection. IEEE Trans. Vis. Computer Graph-
ics, 17(12):2563–71.
Jolliffe, I. T. (2002). Principal Component Analysis.
Springer.
Jones, C., Ma, K.-L., Ethier, S., and Lee, W.-L. (2008). An
integrated exploration approach to visualizing multi-
variate particle data. Computing in Science and Engi-
neering, 10(4):20–29.
Kruskal, J. B. (1964). Multidimensional scaling by opti-
mizing goodness of fit to a nonmetric hypothesis. Psy-
chometrika, 29(1):1–27.
Linsen, L., Long, T. V., and Rosenthal, P. (2009). Linking
multi-dimensional feature space cluster visualization
to surface extraction from multi-field volume data.
IEEE Comp. Graph. and Applications, 29(3):85–89.
Linsen, L., Molchanov, V., Dobrev, P., Rosswog, S., Rosen-
thal, P., and Long, T. V. (2011). Hydrodynamics -
Optimizing Methods and Tools, chapter SmoothViz:
Visualization of Smoothed Particles Hydrodynamics
Data. inTech.
Linsen, L., Van Long, T., Rosenthal, P., and Rosswog,
S. (2008). Surface extraction from multi-field parti-
cle volume data using multi-dimensional cluster vi-
sualization. IEEE Trans. Vis. Computer Graphics,
14(6):1483–90.
Paulovich, F. V., Nonato, L. G., Minghim, R., and Lev-
kowitz, H. (2008). Least square projection: a fast
high-precision multidimensional projection technique
and its application to document mapping. IEEE Trans.
Vis. Computer Graphics, 14(3):564–75.
Paulovich, F. V., Silva, C. T., and Nonato, L. G. (2010).
Two-phase mapping for projecting massive data sets.
IEEE Trans. Vis. Computer Graphics, 16(6):1281–90.
Pelleg, D. and Moore, A. (2000). X-means: Extending k-
means with efficient estimation of the number of clus-
ters. In Proc. 7th. Int. Conf. Machine Learning, pages
727–734. San Francisco.
Poco, J., Eler, D., Paulovich, F., and Minghim, R. (2012).
Employing 2d projections for fast visual exploration
of large fiber tracking. Comput. Graph. Forum,
31(3):1075–1084.
Poco, J., Etemadpour, R., Paulovich, F., Long, T., Rosen-
thal, P., Oliveira, M., Linsen, L., and Minghim, R.
(2011). A framework for exploring multidimensional
data with 3D projections. Comput. Graph. Forum,
30(3):1111–1120.
Reddy, B. S. and Chatterji, B. N. (1996). An FFT-based
technique for translation, rotation, and scale-invariant
image registration. IEEE Trans. Image Processing,
5(8):1266–71.
Tan, P.-n., Steinbach, M., and Kumar, V. (2005). Introduc-
tion to Data Mining. Addison Wesley, Boston, MA.
Tejada, E., Minghim, R., and Gustavo Nonato, L. (2003).
On improved projection techniques to support visual
exploration of multi-dimensional data sets. Informa-
tion Visualization, 2(4):218–231.
Wei, J., Yu, H., Grout, R., Chen, J., and Ma, K.-L. (2012).
Visual analysis of particle behaviors to understand
combustion simulations. IEEE Comput. Graph. Appl.,
32(1):22–33.
IVAPP2013-InternationalConferenceonInformationVisualizationTheoryandApplications
582