ACKNOWLEDGEMENTS
With the support of the Research Project TIN2010-
20590-C02-01 of the Spanish Government.
REFERENCES
Bailey, P., Myre, J., Walsh, S., Lilja, D., and Saar, M.
(2009). Accelerating lattice boltzmann fluid flow sim-
ulations using graphics processors. In International
Conference on Parallel Processing, pages 550 –557.
Chentanez, N. and M
¨
uller, M. (2010). Real-time simulation
of large bodies of water with small scale details. In
Proc. ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (SCA), pages 197–206.
Cords, H. (2007). Mode-splitting for highly detailed, in-
teractive liquid simulation. In Proceedings of the
5th international conference on Computer graphics
and interactive techniques in Australia and Southeast
Asia, GRAPHITE ’07, pages 265–272, New York,
NY, USA. ACM.
Geveler, M., Ribbrock, D., G
¨
oddeke, D., and Turek, S.
(2010). Lattice-boltzmann simulation of the shallow-
water equations with fluid-structure interaction on
multi- and manycore processors. In Keller, R.,
Kramer, D., and Weiss, J.-P., editors, Facing the
multicore-challenge, pages 92–104. Springer-Verlag.
Goswami, P., Schlegel, P., Solenthaler, B., and Pajarola,
R. (2010). Interactive SPH simulation and ren-
dering on the GPU. In Proceedings ACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation, pages 55–64.
He, X. and Luo, L. S. (1997). Theory of the lattice Boltz-
mann method: From the Boltzmann equation to the
lattice Boltzmann equation. Phys. Rev. E, 56:6811–
6817.
Hinsinger, D., Neyret, F., and Cani, M.-P. (2002). Interac-
tive animation of ocean waves. In Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on
Computer animation, SCA ’02, pages 161–166, New
York, NY, USA. ACM.
Hou, S., Sterling, J., Chen, S., and Doolen, G. D. (1996). A
Lattice Boltzmann Subgrid Model for High Reynolds
Number Flows. Fields Institute Communications,
6:151–166.
Kass, M. and Miller, G. (1990). Rapid, stable fluid dynam-
ics for computer graphics. In Proceedings of the 17th
annual conference on Computer graphics and interac-
tive techniques, SIGGRAPH ’90, pages 49–57, New
York, NY, USA. ACM.
Layton, A. T. and van de Panne, M. (2002). A nu-
merically efficient and stable algorithm for animat-
ing water waves. The Visual Computer, 18:41–53.
10.1007/s003710100131.
Lee, H. and Han, S. (2010). Solving the shallow water
equations using 2d sph particles for interactive appli-
cations. The Visual Computer, 26:865–872.
Obrecht, C., Kuznik, F., Tourancheau, B., and Roux, J.-
J. (2011). A new approach to the lattice boltzmann
method for graphics processing units. Computers &
Mathematics with Applications, 61(12):3628 – 3638.
O’Brien, J. F. and Hodgins, J. K. (1995). Dynamic simula-
tion of splashing fluids. In Proceedings of the Com-
puter Animation, CA ’95, pages 198–. IEEE Com-
puter Society.
Qian, Y. H., D’Humi
`
eres, D., and Lallemand, P. (1992).
Lattice BGK models for Navier-Stokes equation. EPL
(Europhysics Letters), 17(6):479.
Salmon, R. (1999). The lattice boltzmann method as a ba-
sis for ocean circulation modeling. Journal of Marine
Research, 57(3):503–535.
Solenthaler, B., Bucher, P., Chentanez, N., M
¨
uller, M., and
Gross, M. (2011). SPH Based Shallow Water Simula-
tion. In Bender, J., Erleben, K., and Galin, E., editors,
VRIPHYS 11: 8th Workshop on Virtual Reality Inter-
actions and Physical Simulations, pages 39–46, Lyon,
France. Eurographics Association.
Tessendorf, J. (1999). Simulating ocean water. SIGGRAPH
course notes.
Th
¨
ommes, G., Sea
¨
ıd, M., and Banda, M. K. (2007). Lat-
tice boltzmann methods for shallow water flow appli-
cations. International Journal for Numerical Methods
in Fluids, 55(7):673–692.
Th
¨
urey, N. (2007). Physically based Animation of Free Sur-
face Flows with the Lattice Boltzmann Method. PhD
thesis, Dept. of Computer Science 10, University of
Erlangen-Nuremberg.
Th
¨
urey, N., M
¨
uller-Fischer, M., Schirm, S., and Gross, M.
(2007). Real-time breaking waves for shallow water
simulations. In Computer Graphics and Applications,
2007. PG ’07. 15th Pacific Conference on, pages 39
–46.
T
¨
olke, J. (2010). Implementation of a lattice boltzmann ker-
nel using the compute unified device architecture de-
veloped by nvidia. Computing and Visualization in
Science, 13:29–39. 10.1007/s00791-008-0120-2.
ˇ
St’ava, O., Bene
ˇ
s, B., Brisbin, M., and K
ˇ
riv
´
anek, J.
(2008). Interactive terrain modeling using hydraulic
erosion. In Proceedings of the 2008 ACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation, SCA ’08, pages 201–210, Aire-la-Ville,
Switzerland, Switzerland. Eurographics Association.
Wei, X., Li, W., Mueller, K., and Kaufman, A. (2004). The
lattice-boltzmann method for simulating gaseous phe-
nomena. Visualization and Computer Graphics, IEEE
Transactions on, 10(2):164 –176.
Yuksel, C., House, D. H., and Keyser, J. (2007). Wave par-
ticles. ACM Trans. Graph., 26(3).
Zhou, J. G. (2004). Lattice Boltzmann Methods for Shallow
Water Flows. Springer.
Zhou, J. G. (2011). Enhancement of the labswe for shal-
low water flows. Journal of Computational Physics,
230(2):394 – 401.
GRAPP2013-InternationalConferenceonComputerGraphicsTheoryandApplications
226