REFERENCES
Abramov, A. (2012). Compression of the visual data
into symbol-like descriptors in terms of the cognitive
real-time vision system. PhD thesis, Georg-August-
Universität Göttingen.
Abramov, A., Pauwels, K., Papon, J., Wörgötter, F., and
Dellen, B. (2012). Real-time segmentation of stereo
videos on a portable system with a mobile gpu. IEEE
Transactions on Circuits and Systems for Video Tech-
nology.
Cigla, C. and Aydin Alatan, A. (2008). Depth assisted ob-
ject segmentation in multi-view video. In 3DTV Con-
ference: The True Vision - Capture, Transmission and
Display of 3D Video, 2008, pages 185 –188.
Comaniciu, D. and Meer, P. (2002). Mean shift: a robust
approach toward feature space analysis. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(5):603 –619.
Du, W., Tian, X., and Sun, Y. (2011). A dynamic threshold
edge-preserving smoothing segmentation algorithm
for anterior chamber oct images based on modified
histogram. In 4th International Congress on Image
and Signal Processing (CISP), volume 2, pages 1123
–1126.
Durand, F. and Dorsey, J. (2002). Fast bilateral filtering
for the display of high-dynamic-range images. ACM
Trans. Graph., 21(3):257–266.
Elad, M. (2002). On the origin of the bilateral filter and
ways to improve it. IEEE Transactions on Image Pro-
cessing, 11(10):1141 – 1151.
Farbman, Z., Fattal, R., Lischinski, D., and Szeliski, R.
(2008). Edge-preserving decompositions for multi-
scale tone and detail manipulation. ACM Trans.
Graph., 27(3):67:1–67:10.
Farmer, M. and Jain, A. (2005). A wrapper-based approach
to image segmentation and classification. IEEE Trans-
actions on Image Processing, 14(12):2060 –2072.
Farsiu, S., Elad, M., and Milanfar, P. (2006). Multiframe de-
mosaicing and super-resolution of color images. IEEE
Transactions on Image Processing, 15(1):141 –159.
Felzenszwalb, P. and Huttenlocher, D. (2004). Efficient
graph-based image segmentation. International Jour-
nal of Computer Vision, 59:167–181.
Jiang, W., Baker, M. L., Wu, Q., Bajaj, C., and Chiu, W.
(2003). Applications of a bilateral denoising filter in
biological electron microscopy. Journal of Structural
Biology, 144(1–2):114 – 122.
Lev, A., Zucker, S. W., and Rosenfeld, A. (1977). Iterative
enhancemnent of noisy images. IEEE Transactions on
Systems, Man and Cybernetics, 7(6):435 –442.
Martin, D., Fowlkes, C., and Malik, J. (2004). Learning
to detect natural image boundaries using local bright-
ness, color, and texture cues. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(5):530
–549.
Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001).
A database of human segmented natural images and
its application to evaluating segmentation algorithms
and measuring ecological statistics. In Proc. 8th Int’l
Conf. Computer Vision, volume 2, pages 416–423.
Muneyasu, M., Maeda, T., Yako, T., and Hinamoto, T.
(1995). A realization of edge-preserving smoothing
filters using layered neural networks. In IEEE Interna-
tional Conference on Neural Networks, Proceedings.,
volume 4, pages 1903 –1906 vol.4.
Paris, S. and Durand, F. (2007). A topological approach to
hierarchical segmentation using mean shift. In IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1 –8.
R., R. and W., S. (2003). Adaptive demosaicking. J. Elec-
tron. Imaging, 12(12):633.
Sun, D., Roth, S., and Black, M. (2010). Secrets of optical
flow estimation and their principles. In IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 2432 –2439.
Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for
gray and color images. In Sixth International Confer-
ence on Computer Vision, pages 839 –846.
Xiao, J., Cheng, H., Sawhney, H., Rao, C., and Isnardi,
M. (2006). Bilateral filtering-based optical flow es-
timation with occlusion detection. In Leonardis, A.,
Bischof, H., and Pinz, A., editors, Computer Vision –
ECCV 2006, volume 3951 of Lecture Notes in Com-
puter Science, pages 211–224. Springer Berlin / Hei-
delberg.
Yang, Q., Wang, S., and Ahuja, N. (2010). Svm for edge-
preserving filtering. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1775 –
1782.
VISAPP2013-InternationalConferenceonComputerVisionTheoryandApplications
14