that feature vectors may vary in length depending on
the gesture class is a difficulty that we will have to
deal with.
REFERENCES
Adams, N. H., Bartsch, M. A., Shifrin, J., and Wakefield,
G. H. (2004). Time series alignment for music infor-
mation retrieval. In ISMIR.
Amin, T. B. and Mahmood, I. (2008). Speech Recognition
using Dynamic Time Warping. In International Con-
ference on Advances in Space Technologies.
Baum, L. (1972). An inequality and associated maximiza-
tion technique in statistical estimation for probabilistic
functions of Markov processes. Inequalities, 3:1–8.
Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A
Maximization Technique Occurring in the Statistical
Analysis of Probabilistic Functions of Markov Chains.
The Annals of Mathematical Statistics, 41:164–171.
Bellman, R. (1954). The theory of dynamic programming.
Bull. Amer. Math. Soc, 60(6):503–515.
D. Gehrig, H. Kuehne, A. W. and Schultz, T. (2009). Hmm-
based human motion recognition with optical flow
data. In IEEE International Conference on Humanoid
Robots (Humanoids 2009), Paris, France.
Kim, S.-J., Magnani, A., and Boyd, S. P. (2005). Robust
Fisher Discriminant Analysis. In Neural Information
Processing Systems.
Liang, R. and Ouhyoung, M. (1998). A real-time continu-
ous gesture recognition system for sign language. In
Automatic Face and Gesture Recognition, 1998. Pro-
ceedings. Third IEEE International Conference on,
pages 558–567. IEEE.
Myers, C. S. (1980). A Comparative Study of Several Dy-
namic Time Warping Algorithms for Speech Recog-
nition.
Rath, T. and Manmatha, R. (2003). Word image matching
using dynamic time warping. In Computer Vision and
Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on, volume 2, pages II–
521 – II–527 vol.2.
Rekha, J., Bhattacharya, J., and Majumder, S. (2011).
Shape, texture and local movement hand gesture fea-
tures for indian sign language recognition. In Trendz
in Information Sciences and Computing (TISC), 2011
3rd International Conference on, pages 30 –35.
Reyes, M., Dominguez, G., and Escalera, S. (2011). Feature
weighting in dynamic time warping for gesture recog-
nition in depth data. In Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Confer-
ence on, pages 1182 –1188.
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio,
M., Moore, R., Kipman, A., and Blake, A. (2011).
Real-time human pose recognition in parts from single
depth images. In CVPR, volume 2, page 7.
Starner, T. and Pentland, A. (1996). Real-Time American
Sign Language Recognition from Video Using Hid-
den Markov Models. In International Symposium on
Computer Vision.
Wenjun, T., Chengdong, W., Shuying, Z., and Li, J. (2010).
Dynamic hand gesture recognition using motion tra-
jectories and key frames. In Advanced Computer Con-
trol (ICACC), 2010 2nd International Conference on,
volume 3, pages 163 –167.
Wikipedia (2012). Dynamic Time Warping.
http://en.wikipedia.org/wiki/Dynamic time warping.
[Online;accessed 01-August-2008].
Wilson, A. D. and Bobick, A. F. (1999). Parametric Hid-
den Markov Models for Gesture Recognition. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 21:884–900.
GestureRecognitionusingSkeletonDatawithWeightedDynamicTimeWarping
625