gin classifiers. The Journal of Machine Learning Re-
search, 1:113–141.
Bol´on-Canedo, V., Peteiro-Barral, D., Alonso-Betanzos,
A., Guijarro-Berdi˜nas, B., and S´anchez-Maro˜no, N.
(2011). Scalability analysis of ANN training algo-
rithms with feature selection. Advances in Artificial
Intelligence, pages 84–93.
Bol´on-Canedo, V., S´anchez-Maro˜no, N., and Alonso-
Betanzos, A. (2011). On the behavior of feature
selection methods dealing with noise and relevance
over synthetic scenarios. In The 2011 International
Joint Conference on Neural Networks (IJCNN), pages
1530–1537. IEEE.
Bron, A., Tiffany, J., Gouveia, S., Yokoi, N., and Voon, L.
(2004). Functional aspects of the tear film lipid layer.
Experimental Eye Research, 78(3):347–360.
Calvo, D., Mosquera, A., Penas, M., Garc´ıa-Res´ua, C., and
Remeseiro, B. (2010). Color Texture Analysis for Tear
Film Classification: A Preliminary Study. In Lecture
Notes in Computer Science: International Conference
on Image Analysis and Recognition (ICIAR), volume
6112, pages 388–397.
Crammer, K. and Singer, Y. (2002). On the learnability and
design of output codes for multiclass problems. Ma-
chine Learning, 47(2):201–233.
Dash, M. and Liu, H. (2003). Consistency-based search
in feature selection. Artificial intelligence, 151(1-
2):155–176.
Dietterich, T. and Bakiri, G. (1995). Solving multiclass
learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2:263–
286.
E.Wolff (1954). Anatomy of the eye and orbit (4th edition).
H. K. Lewis and Co., London.
Fernandez Caballero, J., Mart´ınez, F., Herv´as, C., and
Guti´errez, P. (2010). Sensitivity versus accuracy in
multiclass problems using memetic pareto evolution-
ary neural networks. Neural Networks, IEEE Trans-
actions on, 21(5):750–770.
Furnkranz, J. (2002a). Pairwise classification as an ensem-
ble technique. Machine Learning: ECML 2002, pages
9–38.
Furnkranz, J. (2002b). Round robin classification. The Jour-
nal of Machine Learning Research, 2:721–747.
Garc´ıa-Res´ua, C., Gir´aldez-Fern´andez, M., Penedo, M.,
Calvo, D., Penas, M., and Yebra-Pimentel, E. (2012).
New software application for clarifying tear film lipid
layer patterns. Cornea.
Goto, E., Yagi, Y., Kaido, M., Matsumoto, Y., Konomi, K.,
and Tsubota, K. (2003). Improved functional visual
acuity after punctual occlusion in dry eye patients. Am
J Ophthalmol, 135(5):704–705.
Guillon, J. (1998). Non-invasive tearscope plus routine for
contact lens fitting. Cont Lens Anterior Eye, 21 Suppl
1.
Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. (2006).
Feature Extraction: Foundations and Applications.
Springer Verlag.
Hall, M. (1999). Correlation-based feature selection for
machine learning. PhD thesis, The University of
Waikato.
Haralick, R. M., Shanmugam, K., and Dinstein, I. (1973).
Textural Features for Image Classification. IEEE
Transactions on Systems, Man, and Cybernetics,
3(6):610–621.
Hecht-Nielsen, R. (1990). Neurocomputing. Addison-
Wesley.
Hsu, C. and Lin, C. (2002). A comparison of methods for
multiclass support vector machines. IEEE Transac-
tions on Neural Networks, 13(2):415–425.
Hwang, C. and Yoon, K. (1981). Multiple attribute decision
making: methods and applications: a state-of-the-art
survey, volume 13. Springer-Verlag New York.
King-Smith, P., Fink, B., and Fogt, N. (1999). Three in-
terferometric methods for measuring the thickness of
layers of the tear film. Optom Vis Sci, 76:19–32.
Korb, D. (2002). The Tear Film: Structure, Function and
Clinical Examination. Butterworth-Heinemann.
Kou, G., Lu, Y., Peng, Y., and Shi, Y. (2012). Evalua-
tion of Classification Algorithms using MCDM and
Rank Correlation. International Journal of Infor-
mation Technology & Decision Making (IJITDM),
11(01):197–225.
Lemp, M., Baudouin, C., Baum, J., Dogru, M., Foulks, G.,
Kinoshita, S., Laibson, P., McCulley, J., Murube, J.,
Pfugfelder, S., Rolando, M., and Toda, I. (2007). The
definition and classification of dry eye disease: Re-
port of the definition and classification subcommittee
of the internation dry eye workshop (2007). Ocular
Surface, 5(2):75–92.
Loughrey, J. and Cunningham, P. (2005). Overfitting in
wrapper-based feature subset selection: The harder
you try the worse it gets. Research and Development
in Intelligent Systems XXI, pages 33–43.
McLaren, K. (1976). The development of the CIE 1976
(L*a*b) uniform colour-space and colour-difference
formula. Journal of the Society of Dyers and
Colourists, 92(9):338–341.
Nichols, K., Nichols, J., and Mitchell, G. (2004). The lack
of association between signs and symptons in patients
with dry eye disease. Cornea, 23(8):762–770.
Olson, D. (2004). Comparison of weights in TOPSIS mod-
els. Mathematical and Computer Modelling, 40(7-
8):721–727.
Opricovic, S. and Tzeng, G. (2004). Compromise solu-
tion by MCDM methods: A comparative analysis of
VIKOR and TOPSIS. European Journal of Opera-
tional Research, 156(2):445–455.
Press, W., Flannery, B., Teukolsky, S., Vetterling, W., et al.
(1986). Numerical recipes, volume 547. Cambridge
Univ Press.
Ramos, L., Penas, M., Remeseiro, B., Mosquera, A., Bar-
reira, N., and Yebra-Pimentel, E. (2011). Texture and
color analysis for the automatic classification of the
eye lipid layer. In LNCS: Advances in Computational
Intelligence (International Work Conference on Arti-
ficial Neural Networks-IWANN 2011), volume 6692,
pages 66–73.
Remeseiro, B. (2012). VOPTICAL I1, VARPA op-
tical dataset annotated by optometrists from
the Faculty of Optics and Optometry, Uni-
versity of Santiago de Compostela (Spain).
Multi-criteriaEvaluationofClassBinarizationandFeatureSelectioninTearFilmLipidLayerClassification
69