studies in order to complement the statistical meth-
ods. For instance, in (Hidalgo-Munoz et al., 2012)
an SVM-RFE scheme was applied to identify scalp
spectral dynamics linked with the affective valence
processing. While intra-subject might be interesting
for personalized studies, where subjects need to be
followed over a couple of sessions. Because of the
biologically variability observed intra-subject studies
cannot generalized easily across a cohort of subjects.
ACKNOWLEDGEMENTS
This work is partially funded by FEDER through
the Operational Program Competitiveness Factors -
COMPETE and by National Funds through FCT -
Foundation for Science and Technology in the con-
text of the project FCOMP-01-0124-FEDER-022682
(FCT reference PEst-C/EEI/UI0127/2011). The Fi-
nancial support by the DAAD - FCT is also gratefully
acknowledged.
REFERENCES
Bradley, M. M. and Lang, P. J. (2007). The International Af-
fective Picture System (IAPS) in the Study of Emotion
and Attention. In Bradley, M. M. and Lang, P. J., edi-
tors, Handbook of emotion elicitation and assessment ,
Series in Affective Science, chapter 2, pages 29–46.
Oxford University Press.
Breiman, L. (2001). Random forests. Mach. Learn., 45:5–
32.
Calvo, R. A. and D’Mello, S. (2010). Affect Detection:
An Interdisciplinary Review of Models, Methods, and
Their Applications. IEEE Transactions on Affective
Computing, 1(1):18–37.
Delorme, A. and Makeig, S. (2004). EEGLAB: an open
source toolbox for analysis of single-trial EEG dy-
namics including independent component analysis.
Journal of Neuroscience Methods, 134:9–21.
Frantzidis, C. A., Bratsas, C., Klados, M. A., Konstan-
tinidis, E., Lithari, C. D., Vivas, A. B., Papadelis,
C. L., Kaldoudi, E., Pappas, C., and Bamidis, P. D.
(2010). On the classification of emotional biosig-
nals evoked while viewing affective pictures: An inte-
grated data-mining-based approach for healthcare ap-
plications. Information Technology in Biomedicine,
IEEE Transactions on, 14(2):309–318.
Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002).
Gene selection for cancer classification using support
vector machines. Mach. Learn., 46(1-3):389–422.
Haag, A., Goronzy, S., Schaich, P., and Williams, J. (2004).
Emotion recognition using bio-sensors: First steps to-
wards an automatic system. In Andr
´
e, E., Dybkjæ r,
L., Minker, W., and Heisterkamp, P., editors, Affective
Dialogue Systems, volume i, pages 36–48. Springer.
Hidalgo-Munoz, A., L
´
opez, M., Santos, I., Pereira, A.,
V
´
azquez-Marrufo, M., Galvao-Carmona, A., and
Tom
´
e, A.M. (2012). Application of SVM-RFE on
EEG signals for detecting the most relevant scalp re-
gions linked to affective valence processing. Expert
Systems with Applications, in press(0).
Jaiantilal, A. (2010). http://code.google.com/p/randomforest-
matlab/
Kim, K. H., Bang, S. W., and Kim, S. R. (2004). Emo-
tion recognition system using short-term monitoring
of physiological signals. Medical & Biological Engi-
neering & Computing, 42(3):419–427.
Klados, M. A., Frantzidis, C., Vivas, A. B., Papadelis, C.,
Lithari, C., Pappas, C., and Bamidis, P. D. (2009). A
Framework Combining Delta Event-Related Oscilla-
tions (EROs) and Synchronisation Effects (ERD/ERS)
to Study Emotional Processing. Computational intel-
ligence and neuroscience, 2009:549419.
Lang, P., Bradley, M., and Cuthbert, B. (2008). Interna-
tional affective picture system (IAPS): Affective rat-
ings of pictures and instruction manual.
Macas, M., Vavrecka, M., Gerla, V., and Lhotska, L. (2009).
Classification of the emotional states based on the
EEG signal processing. In 2009 9th International
Conference on Information Technology and Applica-
tions in Biomedicine, number November, pages 1–4.
IEEE.
Mathworks (2012). http://www.mathworks.com/help/signal
/ref/filtfilt.html
Olofsson, J. K., Nordin, S., Sequeira, H., and Polich, J.
(2008). Affective picture processing: an integra-
tive review of ERP findings. Biological Psychology,
77(3):247–265.
Picard, R. W., Vyzas, E., and Healey, J. (2001). Toward
machine emotional intelligence: analysis of affec-
tive physiological state. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(10):1175–
1191.
Russell, J. A. (1980). A circumplex model of affect. Journal
of Personality and Social Psychology, 39(6):1161–
1178.
Schaaff, K. and Schultz, T. (2009). Towards emotion recog-
nition from electroencephalographic signals. In 2009
3rd International Conference on Affective Computing
and Intelligent Interaction and Workshops, pages 1–6.
IEEE.
BIOSIGNALS2013-InternationalConferenceonBio-inspiredSystemsandSignalProcessing
60