must satisfy many material requirements due to biol-
ogy (Sachlos and Czernuszka, 2003) as well as have
the correct geometric shape, too.
ACKNOWLEDGEMENTS
The authors were supported by the Finnish Academy
grant Lastu 135005, European Union grant Sim-
ple4All, Aalto Starting Grant, and Åbo Akademi In-
stitute of Mathematics.
The current version of the software described in
this paper can be obtained from the authors by re-
quest.
REFERENCES
Aalto, D., Aaltonen, O., Happonen, R.-P., Malinen, J.,
Palo, P., Parkkola, R., Saunavaara, J., and Vainio, M.
(2011). Recording speech sound and articulation in
MRI. In Proceedings of BIODEVICES 2011, Rome,
Italy.
Aalto, D., Huhtala, A., Kivelä, A., Malinen, J., Palo, P.,
Saunavaara, J., and Vainio, M. (2012). How far
are vowel formants from computed vocal tract reso-
nances? arXiv:1208.5963, 13 pp.
Antiga, L. (2003). Patient-Specific Modeling of Geometry
and Blood Flow in Large Arteries. PhD thesis, Po-
litecnico di Milano.
Blender (2012). http://www.blender.org. Ac-
cessed Nov. 7th, 2012.
Criminisi, A., Shotton, J., and Konukoglu, E. (2011). Deci-
sion forests for classification, regression, density esti-
mation, manifold learning and semi-supervised learn-
ing. Technical Report MSR-TR-2011-114, Microsoft
Research.
Dedouch, K., Horá
ˇ
cek, J., Vampola, T., and
ˇ
Cerný, L.
(2002). Finite element modelling of a male vocal tract
with consideration of cleft palate. In Forum Acus-
ticum, Sevilla, Spain.
Gonzalez, R. C. and Woods, R. E. (2001). Digital Image
Processing, 2nd Ed. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA.
Hannukainen, A., Lukkari, T., Malinen, J., and Palo, P.
(2007). Vowel formants from the wave equation. J.
Acoust. Soc. Am. Express Letters, 122(1):EL1–EL7.
Hirtum, A. V., Pelorson, X., and Estienne, O. (2011). Ex-
perimental validation of flow models for a rigid vocal
tract replica. J. Acoust. Soc. Am., 130(4):2128–2138.
Horá
ˇ
cek, J., Uruba, V., Radolf, V., Veselý, J., and Bula, V.
(2011). Airflow visualization in a model of human
glottis near the self-oscillating vocal folds model. Ap-
plied and Computational Mechanics, 5:21–28.
Lacis, U. (2012). Modelling air flow in larynx. Master’s
thesis, Umeå University.
Lu, C., Nakai, T., and Suzuki, H. (1993). Finite element
simulation of sound transmission in vocal tract. J.
Acoust. Soc. Jpn. (E), 92:2577 – 2585.
Lukkari, T. and Malinen, J. (2011). Webster’s equation with
curvature and dissipation. arXiv:1204.4075, 22 pp. +
5 pp. appendix.
Materialise (2012). Mimics. http://biomedical. materi-
alise.com/mimics. Accessed Nov. 7th, 2012.
MeshLab (2012). Visual Computing Lab ISTI -
CNR. http://meshlab.sourceforge.net/. Ac-
cessed Nov. 7th, 2012.
Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud
Library (PCL). In IEEE International Conference on
Robotics and Automation (ICRA), Shanghai, China.
Sachlos, E. and Czernuszka, J. T. (2003). Making tissue en-
gineering scaffolds work. Review: the application of
solid freeform fabrication technology to the produc-
tion of tissue engineering scaffolds. Eur Cell Mater,
5:29–39; discussion 39–40.
Story, B., Titze, I., and Hoffman, E. (1996). Vocal area func-
tions from magnetic resonance imaging. J. Acoust.
Soc. Am., 100(1):537–554.
Takemoto, H., Mokhtari, P., and Kitamura, T. (2010).
Acoustic analysis of the vocal tract during vowel pro-
ductions by finite-difference time-domain method. J.
Acoust. Soc. Am., 128(6):3724–3738.
Vascular Modeling Toolkit (2012). http://www.vmtk.org.
Accessed Nov. 7th, 2012.
Vesom, G., Cahill, N. D., Gorelick, L., and Noble, J. A.
(2008). Characterization of anatomical shape based
on random walk hitting times. In In Proceed-
ings of Mathematical Foundations of Computational
Anatomy (MFCA 2008), New York.
Šidlof, P., Horá
ˇ
cek, J., and
ˇ
Ridký, V. (2012). Parallel CFD
simulation of flow in a 3D model of vibrating human
vocal folds. Computers and Fluids. In press.
BIODEVICES2013-InternationalConferenceonBiomedicalElectronicsandDevices
260