REFERENCES
Ben-Hur, A., Siegelmann, H. T., Horn, D., and Vapnik, V.
(2001). Support vector clustering. Journal of Machine
Learning Research, 2:125–137.
Blank, M., Gerwinn, S., Krause, O., and Lehnhoff, S.
(2011). Support vector machines for an efficient rep-
resentation of voltage band constraints. In Innovative
Smart Grid Technologies. IEEE PES.
Bremer, J., Rapp, B., and Sonnenschein, M. (2010). Sup-
port vector based encoding of distributed energy re-
sources’ feasible load spaces. In IEEE PES Confer-
ence on Innovative Smart Grid Technologies Europe,
Chalmers Lindholmen, Gothenburg, Sweden.
Bremer, J., Rapp, B., and Sonnenschein, M. (2011). Encod-
ing distributed search spaces for virtual power plants.
In IEEE Symposium Series in Computational Intelli-
gence 2011 (SSCI 2011), Paris, France.
Coello Coello, C. A. (2002). Theoretical and numerical
constraint-handling techniques used with evolutionary
algorithms: a survey of the state of the art. Com-
puter Methods in Applied Mechanics and Engineer-
ing, 191(11-12):1245–1287.
Guan, X., Zhai, Q., and Papalexopoulos, A. (2003). Op-
timization based methods for unit commitment: La-
grangian relaxation versus general mixed integer pro-
gramming. volume 2, page 1100 Vol. 2.
Hansen, N. (2006). The CMA evolution strategy: a compar-
ing review. In Lozano, J., Larranaga, P., Inza, I., and
Bengoetxea, E., editors, Towards a new evolutionary
computation. Advances on estimation of distribution
algorithms, pages 75–102. Springer.
Himmelblau, D. (1972). Applied nonlinear programming.
McGraw-Hill.
Juszczak, P., Tax, D., and Duin, R. P. W. (2002). Feature
scaling in support vector data description. In Depret-
tere, E., Belloum, A., Heijnsdijk, J., and van der Stap-
pen, F., editors, Proc. ASCI 2002, 8th Annual Conf.
of the Advanced School for Computing and Imaging,
pages 95–102.
Kamper, A. and Esser, A. (2009). Strategies for decen-
tralised balancing power. In A. Lewis, S. Mostaghim,
M. R., editor, Biologically-inspired Optimisation
Methods: Parallel Algorithms, Systems and Applica-
tions, number 210 in Studies in Computational Intel-
ligence, pages 261–289. Springer, Berlin, Heidelberg.
Karaboga, D. and Basturk, B. (2007). A powerful and
efficient algorithm for numerical function optimiza-
tion: artificial bee colony (ABC) algorithm. Journal
of Global Optimization, 39(3):459–471.
Kennedy, J. and Eberhart, R. (1995). Particle swarm op-
timization. In Neural Networks, 1995. Proceedings.,
IEEE International Conference on, volume 4, pages
1942–1948 vol.4. IEEE.
Kim, D. G. (1998). Riemann mapping based constraint han-
dling for evolutionary search. In SAC, pages 379–385.
Kok, K., Derzsi, Z., Gordijn, J., Hommelberg, M., Warmer,
C., Kamphuis, R., and Akkermans, H. (2008). Agent-
based electricity balancing with distributed energy re-
sources, a multiperspective case study. Hawaii Inter-
national Conference on System Sciences, 0:173.
Koziel, S. and Michalewicz, Z. (1999). Evolutionary al-
gorithms, homomorphous mappings, and constrained
parameter optimization. Evol. Comput., 7:19–44.
Kramer, O. (2010). A review of constraint-handling tech-
niques for evolution strategies. Appl. Comp. Intell.
Soft Comput., 2010:3:1–3:19.
Kwok, J. and Tsang, I. (2004). The pre-image problem in
kernel methods. Neural Networks, IEEE Transactions
on, 15(6):1517–1525.
Liepins, G. E. and Vose, M. D. (1990). Representational is-
sues in genetic optimization. Journal of Experimental
and Theoretical Artificial Intelligence, 2.
Michalewicz, Z. (1996). Genetic algorithms + data struc-
tures = evolution programs (3rd ed.). Springer-Verlag,
London, UK.
Michalewicz, Z. and Schoenauer, M. (1996). Evolution-
ary algorithms for constrained parameter optimization
problems. Evol. Comput., 4:1–32.
Mihailescu, R.-C., Vasirani, M., and Ossowski, S. (2011).
Dynamic coalition adaptation for efficient agent-based
virtual power plants. In Proceedings of the 9th
German conference on Multiagent system technolo-
gies, MATES’11, pages 101–112, Berlin, Heidelberg.
Springer-Verlag.
Mika, S., Sch
¨
olkopf, B., Smola, A., M
¨
uller, K. R., Scholz,
M., and R
¨
atsch, G. (1999). Kernel PCA and de-
noising in feature spaces. In Proceedings of the 1998
conference on Advances in neural information pro-
cessing systems II, pages 536–542, Cambridge, MA,
USA. MIT Press.
Pereira, J., Viana, A., Lucus, B., and Matos, M. (2008). A
meta-heuristic approach to the unit commitment prob-
lem under network constraints. International Journal
of Energy Sector Management, 2(3):449–467.
Ramchurn, S. D., Vytelingum, P., Rogers, A., and Jennings,
N. R. (2011). Agent-based control for decentralised
demand side management in the smart grid. In AA-
MAS, pages 5–12.
Richardson, J. T., Palmer, M. R., Liepins, G. E., and
Hilliard, M. R. (1989). Some guidelines for genetic
algorithms with penalty functions. In Proceedings
of the 3rd International Conference on Genetic Al-
gorithms, pages 191–197, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.
Sch
¨
olkopf, B., Mika, S., Burges, C., Knirsch, P., M
¨
uller, K.-
R., R
¨
atsch, G., and Smola, A. (1999). Input space vs.
feature space in kernel-based methods. IEEE Trans-
actions on Neural Networks, 10(5):1000–1017.
Tax, D. M. J. and Duin, R. P. W. (1999). Data domain
description using support vectors. In ESANN, pages
251–256.
Thomas, B. (2007). Mini-Blockheizkraftwerke: Grundla-
gen, Ger
¨
atetechnik, Betriebsdaten. Vogel Buchverlag.
Tr
¨
oschel, M. and Appelrath, H.-J. (2009). Towards reac-
tive scheduling for large-scale virtual power plants. In
Braubach, L., van der Hoek, W., Petta, P., and Pokahr,
A., editors, MATES, volume 5774 of Lecture Notes in
Computer Science, pages 141–152. Springer.
ICAART2013-InternationalConferenceonAgentsandArtificialIntelligence
100