American Hospital Association (2007). Continued
Progress: Hospital Use of Information Technology.
American Hospital Association.
Buja, A., McDonald, J. A., Michalak, J., and Stuetzle, W.
(1991). Interactive data visualization using focusing
and linking. In Proceedings of the 2nd conference
on Visualization ’91, VIS ’91, pages 156–163, Los
Alamitos, CA, USA. IEEE Computer Society Press.
Chalmers, M. (1996). A linear iteration time layout algo-
rithm for visualising high-dimensional data. In Pro-
ceedings of the 7th conference on Visualization ’96,
VIS ’96, pages 127–ff., Los Alamitos, CA, USA.
IEEE Computer Society Press.
Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W.,
Roth, E., Morton, S. C., and Shekelle, P. G. (2006).
Systematic review: impact of health information tech-
nology on quality, efficiency, and costs of medical
care. Ann Intern Med, 144(10):742–752.
Cuzzocrea, A., Song, I.-Y., and Davis, K. C. (2011). An-
alytics over large-scale multidimensional data: the
big data revolution! In Proceedings of the ACM
14th international workshop on Data Warehousing
and OLAP, DOLAP ’11, pages 101–104, New York,
NY, USA. ACM.
Jha, A. K., DesRoches, C. M., Campbell, E. G., Donelan,
K., Rao, S. R., Ferris, T. G., Shields, A., Rosen-
baum, S., and Blumenthal, D. (2009). Use of elec-
tronic health records in U.S. hospitals. N Engl J Med,
360(16):1628–1638.
Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham,
F., Riche, N. H., Weaver, C., Lee, B., Brodbeck, D.,
and Buono, P. (2011). Research directions in data
wrangling: Visualizations and transformations for us-
able and credible data. Information Visualization,
10(4):271–288.
Keim, D. A., Kohlhammer, J., Ellis, G., and Mansmann, F.,
editors (2010). Mastering The Information Age - Solv-
ing Problems with Visual Analytics. Eurographics.
Krzywinski, M. I., Schein, J. E., Birol, I., Connors, J., Gas-
coyne, R., Horsman, D., Jones, S. J., and Marra, M. A.
(2009). Circos: An information aesthetic for compar-
ative genomics. Genome Research.
Laney, D. (2001). 3d data management: Con-
trolling data volume, velocity, and vari-
ety. application delivery strategies. Avail-
able online at http://blogs.gartner.com/doug-
laney/files/2012/01/ad949-3D-Data-Management-
Controlling-Data-Volume-Velocity-and-Variety.pdf
Visited on August, 22th, 2012.
North, C. and Shneiderman, B. (2000). Snap-together vi-
sualization: Can users construct and operate coordi-
nated views? Intl. Journal of Human-Computer Stud-
ies, Academic Press, 53(5):715–739.
Shneiderman, B. (1996). The eyes have it: A task by data
type taxonomy for information visualizations. In Pro-
ceedings of the 1996 IEEE Symposium on Visual Lan-
guages, VL ’96, pages 336–, Washington, DC, USA.
IEEE Computer Society.
Van der Aalst, W. M. P. (2012). Process mining. Communi-
cations of the ACM, 55(8):7683.
Wong, P. C. and Thomas, J. (2004). Visual analytics. Com-
puter Graphics and Applications, IEEE, 24(5):20 –
21.
Zikopoulos, P. and Eaton, C. (2011). Understand-
ing Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data. McGraw-Hill Compa-
nies,Incorporated.
SupportingStrategicPlanningwithInteractiveVisualization-ACaseStudyofPatientFlowthroughaLargeHospital
93